Normalized defining polynomial
\( x^{20} - 2 x^{19} + 6 x^{18} - 8 x^{17} + 16 x^{16} - 14 x^{15} + 32 x^{14} - 12 x^{13} + 32 x^{12} + 8 x^{11} + 48 x^{10} - 16 x^{9} + 48 x^{8} + 8 x^{7} + 24 x^{6} + 8 x^{5} + 32 x^{4} + 16 x^{3} + 32 x^{2} + 16 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15233950180173557331984384=2^{16}\cdot 3^{10}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{16} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{24} a^{17} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{2136} a^{18} - \frac{13}{712} a^{17} - \frac{7}{534} a^{16} - \frac{5}{534} a^{15} - \frac{37}{1068} a^{14} - \frac{11}{178} a^{13} + \frac{29}{534} a^{12} - \frac{13}{178} a^{11} + \frac{1}{178} a^{10} + \frac{1}{6} a^{9} + \frac{20}{89} a^{8} + \frac{95}{534} a^{7} - \frac{73}{534} a^{6} - \frac{3}{89} a^{5} + \frac{1}{267} a^{4} - \frac{4}{267} a^{3} + \frac{10}{267} a^{2} + \frac{37}{89} a + \frac{28}{89}$, $\frac{1}{98256} a^{19} - \frac{1}{24564} a^{18} + \frac{475}{24564} a^{17} + \frac{53}{12282} a^{16} - \frac{209}{49128} a^{15} - \frac{13}{24564} a^{14} + \frac{663}{8188} a^{13} - \frac{1381}{12282} a^{12} + \frac{863}{24564} a^{11} - \frac{793}{12282} a^{10} - \frac{860}{6141} a^{9} + \frac{1391}{12282} a^{8} - \frac{77}{6141} a^{7} + \frac{1873}{12282} a^{6} - \frac{937}{12282} a^{5} + \frac{5371}{12282} a^{4} - \frac{332}{6141} a^{3} + \frac{329}{2047} a^{2} - \frac{2777}{6141} a - \frac{2357}{6141}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2533}{98256} a^{19} + \frac{1153}{24564} a^{18} - \frac{3035}{24564} a^{17} + \frac{875}{6141} a^{16} - \frac{13127}{49128} a^{15} + \frac{1347}{8188} a^{14} - \frac{12775}{24564} a^{13} + \frac{1133}{24564} a^{12} - \frac{9673}{24564} a^{11} - \frac{1577}{12282} a^{10} - \frac{7816}{6141} a^{9} + \frac{2030}{2047} a^{8} - \frac{13361}{12282} a^{7} - \frac{268}{6141} a^{6} - \frac{1797}{2047} a^{5} - \frac{1807}{12282} a^{4} - \frac{1899}{2047} a^{3} + \frac{374}{6141} a^{2} - \frac{2283}{2047} a + \frac{2747}{6141} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64033.5089322 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.4.433674369792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.3.380208.1 |
| Degree 6 sibling: | 6.0.3421872.4 |
| Degree 10 siblings: | 10.0.3903069328128.1, 10.4.433674369792.1 |
| Degree 12 sibling: | 12.0.11709207984384.1 |
| Degree 15 sibling: | 15.3.1483978183108890624.1 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |