Normalized defining polynomial
\( x^{20} - 2 x^{19} + x^{18} - 7 x^{17} + 30 x^{16} - 31 x^{15} + 85 x^{14} - 294 x^{13} + 401 x^{12} - 247 x^{11} + 505 x^{10} - 849 x^{9} + 449 x^{8} + 956 x^{7} - 1284 x^{6} + 17 x^{5} + 680 x^{4} - 347 x^{3} - 256 x^{2} - 168 x + 441 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151523839718807162587890625=5^{10}\cdot 83^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{8} - \frac{2}{9} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{189} a^{15} + \frac{1}{27} a^{14} - \frac{20}{189} a^{13} + \frac{4}{189} a^{12} - \frac{4}{63} a^{11} + \frac{8}{63} a^{10} - \frac{4}{27} a^{9} + \frac{2}{27} a^{8} - \frac{5}{63} a^{7} + \frac{2}{9} a^{6} - \frac{83}{189} a^{5} - \frac{44}{189} a^{4} - \frac{2}{189} a^{3} - \frac{47}{189} a^{2} - \frac{13}{63} a - \frac{1}{3}$, $\frac{1}{189} a^{16} - \frac{2}{63} a^{14} + \frac{2}{21} a^{13} + \frac{23}{189} a^{12} - \frac{2}{21} a^{11} - \frac{1}{27} a^{10} + \frac{1}{9} a^{9} + \frac{13}{189} a^{8} + \frac{1}{9} a^{7} + \frac{1}{189} a^{6} + \frac{11}{63} a^{5} - \frac{1}{21} a^{4} - \frac{11}{63} a^{3} - \frac{25}{189} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{189} a^{17} - \frac{1}{63} a^{14} + \frac{29}{189} a^{13} + \frac{2}{63} a^{12} - \frac{16}{189} a^{11} - \frac{8}{63} a^{10} - \frac{29}{189} a^{9} - \frac{1}{9} a^{8} - \frac{26}{189} a^{7} - \frac{31}{63} a^{6} + \frac{20}{63} a^{5} - \frac{5}{21} a^{4} - \frac{37}{189} a^{3} - \frac{1}{21} a^{2} + \frac{2}{21} a$, $\frac{1}{17955} a^{18} - \frac{2}{2565} a^{17} + \frac{13}{17955} a^{16} + \frac{26}{17955} a^{15} - \frac{28}{513} a^{14} + \frac{73}{17955} a^{13} - \frac{41}{855} a^{12} - \frac{593}{3591} a^{11} + \frac{16}{315} a^{10} - \frac{13}{2565} a^{9} + \frac{185}{1197} a^{8} - \frac{2663}{17955} a^{7} + \frac{632}{3591} a^{6} - \frac{1183}{2565} a^{5} - \frac{527}{17955} a^{4} + \frac{3802}{17955} a^{3} - \frac{1397}{17955} a^{2} - \frac{326}{1197} a + \frac{92}{285}$, $\frac{1}{486545947051939046685} a^{19} - \frac{13223880359030353}{486545947051939046685} a^{18} - \frac{14154553098748966}{23168854621520906985} a^{17} - \frac{1009585132814495221}{486545947051939046685} a^{16} + \frac{34150251026916763}{28620349826584649805} a^{15} + \frac{24042893091097854448}{486545947051939046685} a^{14} + \frac{55582770939735195392}{486545947051939046685} a^{13} - \frac{2661365824732852568}{28620349826584649805} a^{12} - \frac{1375349425675804529}{69506563864562720955} a^{11} - \frac{613459063801682029}{23168854621520906985} a^{10} + \frac{12402103570635132559}{486545947051939046685} a^{9} + \frac{71413083073623500647}{486545947051939046685} a^{8} - \frac{8474127588088223006}{162181982350646348895} a^{7} + \frac{130448784778629664049}{486545947051939046685} a^{6} + \frac{12411119331288379232}{486545947051939046685} a^{5} + \frac{44354182811290162409}{97309189410387809337} a^{4} - \frac{12499116523396882487}{32436396470129269779} a^{3} + \frac{61140042725397846883}{486545947051939046685} a^{2} + \frac{783270152881758781}{9540116608861549935} a - \frac{2929034176821979798}{7722951540506968995}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44240.6265271 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-415}) \), \(\Q(\sqrt{-83}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-83})\), 5.1.172225.1 x5, 10.0.12309502009375.1, 10.0.2461900401875.1 x5, 10.2.148307253125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $83$ | 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |