Normalized defining polynomial
\( x^{20} - 10 x^{19} + 55 x^{18} - 210 x^{17} + 715 x^{16} - 2250 x^{15} + 6655 x^{14} - 17485 x^{13} + 43615 x^{12} - 99585 x^{11} + 218518 x^{10} - 432640 x^{9} + 837095 x^{8} - 1427265 x^{7} + 2414710 x^{6} - 3425825 x^{5} + 4994295 x^{4} - 5360940 x^{3} + 6692935 x^{2} - 4116040 x + 4451401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15097568161436356604099273681640625=5^{34}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(275=5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{275}(1,·)$, $\chi_{275}(131,·)$, $\chi_{275}(199,·)$, $\chi_{275}(76,·)$, $\chi_{275}(144,·)$, $\chi_{275}(274,·)$, $\chi_{275}(21,·)$, $\chi_{275}(89,·)$, $\chi_{275}(219,·)$, $\chi_{275}(221,·)$, $\chi_{275}(34,·)$, $\chi_{275}(164,·)$, $\chi_{275}(166,·)$, $\chi_{275}(109,·)$, $\chi_{275}(111,·)$, $\chi_{275}(241,·)$, $\chi_{275}(54,·)$, $\chi_{275}(56,·)$, $\chi_{275}(186,·)$, $\chi_{275}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} - \frac{1}{7} a^{15} + \frac{2}{7} a^{14} - \frac{3}{7} a^{12} - \frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{1757} a^{18} - \frac{22}{1757} a^{17} + \frac{708}{1757} a^{16} + \frac{55}{1757} a^{15} + \frac{622}{1757} a^{14} - \frac{367}{1757} a^{13} - \frac{493}{1757} a^{12} + \frac{284}{1757} a^{11} + \frac{285}{1757} a^{10} + \frac{694}{1757} a^{9} - \frac{68}{251} a^{8} - \frac{87}{1757} a^{7} - \frac{629}{1757} a^{6} - \frac{521}{1757} a^{5} + \frac{111}{1757} a^{4} - \frac{617}{1757} a^{3} + \frac{29}{1757} a^{2} + \frac{15}{1757} a - \frac{425}{1757}$, $\frac{1}{4558006837289471498546712843645966763595674792799} a^{19} - \frac{117954069124256541366600347854149238486603832}{651143833898495928363816120520852394799382113257} a^{18} + \frac{312594371329615736065031998588471968462041887466}{4558006837289471498546712843645966763595674792799} a^{17} - \frac{1001279671494232459389947322190391030525315984782}{4558006837289471498546712843645966763595674792799} a^{16} + \frac{1150718449152378818009385884601660867226470601961}{4558006837289471498546712843645966763595674792799} a^{15} + \frac{1284034946271907972800113582338184772162707088186}{4558006837289471498546712843645966763595674792799} a^{14} + \frac{1632111378948569788888285986826555997965498655027}{4558006837289471498546712843645966763595674792799} a^{13} - \frac{261786404986226920765780642370833383581974209552}{4558006837289471498546712843645966763595674792799} a^{12} - \frac{274535780717859654711463910986777814151195732897}{4558006837289471498546712843645966763595674792799} a^{11} + \frac{514509422997995869011249359904476301487114925357}{4558006837289471498546712843645966763595674792799} a^{10} - \frac{520410715971362398116570357204118404762609571106}{4558006837289471498546712843645966763595674792799} a^{9} - \frac{1264994617579358520743477022669372964035954861616}{4558006837289471498546712843645966763595674792799} a^{8} - \frac{457994810211810616373836281577607102245826340309}{4558006837289471498546712843645966763595674792799} a^{7} + \frac{1632378738672959928798811299429092264342961003099}{4558006837289471498546712843645966763595674792799} a^{6} + \frac{70468719393148369173439535111409900079739240810}{651143833898495928363816120520852394799382113257} a^{5} - \frac{2021247308909061350289988656769977894328002582472}{4558006837289471498546712843645966763595674792799} a^{4} - \frac{197117098887339104508827396450632554518754482432}{651143833898495928363816120520852394799382113257} a^{3} + \frac{758352704124536154044345015028884499301192387027}{4558006837289471498546712843645966763595674792799} a^{2} - \frac{829456136367718619159278253738665386034781779649}{4558006837289471498546712843645966763595674792799} a + \frac{767804915426236012836113819182133915828329404686}{4558006837289471498546712843645966763595674792799}$
Class group and class number
$C_{5}\times C_{710}$, which has order $3550$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.122872161865234375.1, 10.0.24574432373046875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $11$ | 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |