Normalized defining polynomial
\( x^{20} - 4 x^{19} + 40 x^{18} - 124 x^{17} + 815 x^{16} - 2164 x^{15} + 10834 x^{14} - 24620 x^{13} + 101774 x^{12} - 198776 x^{11} + 710860 x^{10} - 1188452 x^{9} + 3826719 x^{8} - 5429272 x^{7} + 15991074 x^{6} - 18262392 x^{5} + 47151361 x^{4} - 38741504 x^{3} + 92992732 x^{2} - 43101732 x + 90594151 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1505680748169532571648000000000000000=2^{30}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(133,·)$, $\chi_{440}(201,·)$, $\chi_{440}(397,·)$, $\chi_{440}(333,·)$, $\chi_{440}(81,·)$, $\chi_{440}(37,·)$, $\chi_{440}(213,·)$, $\chi_{440}(89,·)$, $\chi_{440}(93,·)$, $\chi_{440}(361,·)$, $\chi_{440}(289,·)$, $\chi_{440}(357,·)$, $\chi_{440}(401,·)$, $\chi_{440}(169,·)$, $\chi_{440}(157,·)$, $\chi_{440}(49,·)$, $\chi_{440}(53,·)$, $\chi_{440}(9,·)$, $\chi_{440}(317,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{129465048205969732082} a^{18} - \frac{4386745894764693593}{129465048205969732082} a^{17} - \frac{5795495127824378987}{129465048205969732082} a^{16} + \frac{5398581827088625317}{64732524102984866041} a^{15} - \frac{21681594856348756439}{129465048205969732082} a^{14} - \frac{32028476571840651089}{129465048205969732082} a^{13} - \frac{6280515428730923949}{64732524102984866041} a^{12} - \frac{12687981328305388033}{129465048205969732082} a^{11} + \frac{1773135110523987587}{64732524102984866041} a^{10} - \frac{7023735395622664239}{64732524102984866041} a^{9} - \frac{51687944860507675625}{129465048205969732082} a^{8} - \frac{18260704970265208431}{64732524102984866041} a^{7} - \frac{55289415541152622783}{129465048205969732082} a^{6} - \frac{21079642912051569583}{129465048205969732082} a^{5} + \frac{5280954985400113009}{64732524102984866041} a^{4} - \frac{3080758734537280111}{64732524102984866041} a^{3} - \frac{54623750072342076023}{129465048205969732082} a^{2} + \frac{17748939790426915670}{64732524102984866041} a - \frac{495418086098270553}{1187752735834584698}$, $\frac{1}{118216937413906326588751968930290650256977427042} a^{19} + \frac{242871368242008535795300241}{118216937413906326588751968930290650256977427042} a^{18} + \frac{1837540030207052918567970715856992886530091086}{59108468706953163294375984465145325128488713521} a^{17} + \frac{15713336633476176543057408629450503108448619595}{118216937413906326588751968930290650256977427042} a^{16} + \frac{10349421815976805838494631863951486648687496702}{59108468706953163294375984465145325128488713521} a^{15} + \frac{12212983205610533853809473769392323671916251943}{118216937413906326588751968930290650256977427042} a^{14} + \frac{8810687717641064865010810271809837618801171283}{59108468706953163294375984465145325128488713521} a^{13} + \frac{24524706890264878875897618227086030440520906639}{118216937413906326588751968930290650256977427042} a^{12} - \frac{9721766949743151714862250607794620943669023271}{118216937413906326588751968930290650256977427042} a^{11} - \frac{3648414194016155056274698987350592885583083664}{59108468706953163294375984465145325128488713521} a^{10} + \frac{16872727046540713825079493045297365977864495096}{59108468706953163294375984465145325128488713521} a^{9} + \frac{10181665844792234318827804085070446932962560357}{59108468706953163294375984465145325128488713521} a^{8} - \frac{2851284670857578054430499291581143338196148906}{59108468706953163294375984465145325128488713521} a^{7} - \frac{28296158741921968782542484904219599335743315139}{59108468706953163294375984465145325128488713521} a^{6} + \frac{16578445401604141872333719181260202576469609776}{59108468706953163294375984465145325128488713521} a^{5} + \frac{19970654894339195018018102061956072077582406055}{59108468706953163294375984465145325128488713521} a^{4} + \frac{47954903666644538858106256986359388494750806319}{118216937413906326588751968930290650256977427042} a^{3} - \frac{40298407922832348658119151761570923342055104899}{118216937413906326588751968930290650256977427042} a^{2} + \frac{22312438400537867903317311213178258542784684101}{118216937413906326588751968930290650256977427042} a + \frac{248500831794186747839388456732310079102169891}{542279529421588654076843894175645184665034069}$
Class group and class number
$C_{22082}$, which has order $22082$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.8000.2, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |