Normalized defining polynomial
\( x^{20} - 2 x^{19} + 22 x^{18} - 27 x^{17} + 54 x^{16} + 58 x^{15} - 816 x^{14} + 2216 x^{13} - 3887 x^{12} + 1165 x^{11} + 21460 x^{10} - 82331 x^{9} + 243515 x^{8} - 209120 x^{7} - 69140 x^{6} + 1208576 x^{5} - 1135731 x^{4} + 359049 x^{3} + 3568744 x^{2} - 4233714 x + 4326689 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15013659868612228667344970703125=5^{13}\cdot 97^{2}\cdot 1039^{2}\cdot 1049^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{300980726658663510396044049272317920275179814106501638415945063451} a^{19} - \frac{30824326463036933973680347254181638217232539400408143046367814410}{300980726658663510396044049272317920275179814106501638415945063451} a^{18} + \frac{110175514171742317113027380090361294194390096654704048671316592880}{300980726658663510396044049272317920275179814106501638415945063451} a^{17} - \frac{68623917590244924414820381504037236912933240954025687094164761683}{300980726658663510396044049272317920275179814106501638415945063451} a^{16} + \frac{111745328625039044359693607348922036137148921252280394079147373483}{300980726658663510396044049272317920275179814106501638415945063451} a^{15} - \frac{40003569117192732128639576336055365846737664048481987978933290474}{300980726658663510396044049272317920275179814106501638415945063451} a^{14} - \frac{87702606562607840577368699945236475252102525765075118019197857379}{300980726658663510396044049272317920275179814106501638415945063451} a^{13} + \frac{141645614929865244440205468457734052134298823733988396403315692062}{300980726658663510396044049272317920275179814106501638415945063451} a^{12} - \frac{58938095308397292177351242691904561787477979340360495475921141302}{300980726658663510396044049272317920275179814106501638415945063451} a^{11} - \frac{45729877846469912713378782125051260343534848171874359768866113741}{300980726658663510396044049272317920275179814106501638415945063451} a^{10} - \frac{2656474093262700289887312741367875150529598547468081204021850487}{7340993333138134399903513396885802933540971075768332644291343011} a^{9} - \frac{24066384613884366791849588762449609231319822370354852364435201017}{300980726658663510396044049272317920275179814106501638415945063451} a^{8} - \frac{144807866249544384686413776422974829215479467451924387727364531753}{300980726658663510396044049272317920275179814106501638415945063451} a^{7} + \frac{136525254493258821472051929834794196163542488793160188717715168310}{300980726658663510396044049272317920275179814106501638415945063451} a^{6} + \frac{74799818647701322523978585808161082100896764769141018588044815369}{300980726658663510396044049272317920275179814106501638415945063451} a^{5} - \frac{88156777395043839872180059930308422587969382401406114113870965007}{300980726658663510396044049272317920275179814106501638415945063451} a^{4} - \frac{109476203376594818624611749645913584305116390441270070902772376559}{300980726658663510396044049272317920275179814106501638415945063451} a^{3} + \frac{84354616768623049676457967598228801933668614791505359671271482637}{300980726658663510396044049272317920275179814106501638415945063451} a^{2} - \frac{65421755833390424051698729378790943882913497805729301245726734236}{300980726658663510396044049272317920275179814106501638415945063451} a + \frac{1587835093692527324182353770712132985445770498460026493460437868}{7340993333138134399903513396885802933540971075768332644291343011}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6261261.99419 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||