Normalized defining polynomial
\( x^{20} - 3 x^{19} + 4 x^{18} - 4 x^{17} - 82 x^{16} - 72 x^{15} + 121 x^{14} + 1790 x^{13} + 5367 x^{12} + 19115 x^{11} + 56651 x^{10} + 113482 x^{9} + 217288 x^{8} + 331696 x^{7} + 452704 x^{6} + 634779 x^{5} + 824178 x^{4} + 1595619 x^{3} + 2792880 x^{2} + 3799228 x + 3079229 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15013659868612228667344970703125=5^{13}\cdot 97^{2}\cdot 1039^{2}\cdot 1049^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{58505094910145859838505224372753240436014581951040006277007213343} a^{19} - \frac{1594074522361698287554332321759034076780341577053742479403098734}{58505094910145859838505224372753240436014581951040006277007213343} a^{18} + \frac{11209891406354483280564826084215343651413127727290516167047897444}{58505094910145859838505224372753240436014581951040006277007213343} a^{17} + \frac{26466785361389237888794294453178845035645043340369779541620416804}{58505094910145859838505224372753240436014581951040006277007213343} a^{16} + \frac{18396516994090535353952812324946460665863451245802190698130808259}{58505094910145859838505224372753240436014581951040006277007213343} a^{15} - \frac{9091977189589760766955770256535455729138660514106219751398895916}{58505094910145859838505224372753240436014581951040006277007213343} a^{14} + \frac{9982770173627303226886665846880583890435680230303886543984343505}{58505094910145859838505224372753240436014581951040006277007213343} a^{13} + \frac{15855161087490825644876273359765861642405682245440652742137342066}{58505094910145859838505224372753240436014581951040006277007213343} a^{12} - \frac{21248943315389332792862611361536783586515498276022274863721463223}{58505094910145859838505224372753240436014581951040006277007213343} a^{11} - \frac{5588349085136989542565465593396538522872185503710185695218003500}{58505094910145859838505224372753240436014581951040006277007213343} a^{10} + \frac{1985359651930390695588875581765517972442700302521604938726715100}{4500391916165066141423478797904095418154967842387692790539016411} a^{9} - \frac{19425054183424279011756437779521855312037659600366394688577311082}{58505094910145859838505224372753240436014581951040006277007213343} a^{8} + \frac{12348401807384684951496862489346733293590423270501120615926859198}{58505094910145859838505224372753240436014581951040006277007213343} a^{7} - \frac{1895231688067343108147238429444643478513178124278435230428018924}{4500391916165066141423478797904095418154967842387692790539016411} a^{6} - \frac{1377700013114357713107113635739958252929047919668251682351706639}{58505094910145859838505224372753240436014581951040006277007213343} a^{5} - \frac{4470743116718844472581653082213974722196368878042208307706578886}{58505094910145859838505224372753240436014581951040006277007213343} a^{4} - \frac{972433890390716459125901352031947806804514225559903456750276643}{58505094910145859838505224372753240436014581951040006277007213343} a^{3} + \frac{14935072162005419053005642744486614680330091380363373860106557995}{58505094910145859838505224372753240436014581951040006277007213343} a^{2} + \frac{13518589877641481912428625085342679814863053824876793760833147711}{58505094910145859838505224372753240436014581951040006277007213343} a - \frac{24293103705827411737005819374292290645744564452973895888829238166}{58505094910145859838505224372753240436014581951040006277007213343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13144391.0374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||