Normalized defining polynomial
\( x^{20} - 8 x^{19} + 28 x^{18} - 80 x^{17} + 286 x^{16} - 896 x^{15} + 2080 x^{14} - 4136 x^{13} + 9133 x^{12} - 17560 x^{11} + 29132 x^{10} - 49080 x^{9} + 105208 x^{8} - 212512 x^{7} + 339544 x^{6} - 409424 x^{5} + 410364 x^{4} - 340128 x^{3} + 234400 x^{2} - 97920 x + 18496 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1492547363720394483260280799232=2^{55}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{552} a^{14} + \frac{13}{276} a^{13} + \frac{61}{552} a^{12} - \frac{5}{138} a^{11} + \frac{31}{552} a^{10} + \frac{13}{276} a^{9} + \frac{73}{552} a^{8} + \frac{3}{46} a^{7} - \frac{13}{138} a^{6} + \frac{5}{138} a^{5} + \frac{31}{92} a^{4} - \frac{5}{23} a^{3} + \frac{65}{138} a^{2} + \frac{8}{23} a + \frac{2}{69}$, $\frac{1}{552} a^{15} + \frac{1}{92} a^{13} - \frac{19}{552} a^{12} - \frac{1}{552} a^{11} + \frac{2}{23} a^{10} + \frac{3}{92} a^{9} + \frac{1}{552} a^{8} + \frac{29}{138} a^{7} - \frac{1}{69} a^{6} + \frac{10}{69} a^{5} - \frac{21}{92} a^{4} + \frac{17}{138} a^{3} + \frac{7}{69} a^{2} - \frac{1}{69} a + \frac{17}{69}$, $\frac{1}{1104} a^{16} - \frac{1}{1104} a^{14} + \frac{1}{184} a^{13} - \frac{83}{1104} a^{12} - \frac{11}{138} a^{11} + \frac{77}{1104} a^{10} + \frac{13}{552} a^{9} - \frac{25}{552} a^{8} - \frac{65}{276} a^{7} - \frac{9}{92} a^{6} + \frac{37}{276} a^{5} + \frac{1}{138} a^{4} + \frac{43}{138} a^{3} + \frac{95}{276} a^{2} + \frac{28}{69} a - \frac{7}{69}$, $\frac{1}{9440304} a^{17} - \frac{995}{4720152} a^{16} - \frac{1977}{3146768} a^{15} - \frac{59}{1180038} a^{14} + \frac{65185}{3146768} a^{13} + \frac{356783}{4720152} a^{12} - \frac{286755}{3146768} a^{11} - \frac{263}{69414} a^{10} - \frac{195917}{2360076} a^{9} + \frac{247283}{2360076} a^{8} + \frac{573391}{2360076} a^{7} - \frac{164351}{2360076} a^{6} + \frac{347777}{2360076} a^{5} - \frac{42478}{196673} a^{4} + \frac{41753}{2360076} a^{3} - \frac{22521}{393346} a^{2} - \frac{102733}{590019} a - \frac{2241}{11569}$, $\frac{1}{18880608} a^{18} - \frac{1}{18880608} a^{17} + \frac{3623}{18880608} a^{16} + \frac{3149}{18880608} a^{15} + \frac{9235}{18880608} a^{14} + \frac{465145}{18880608} a^{13} - \frac{1248715}{18880608} a^{12} - \frac{133589}{1110624} a^{11} - \frac{1988}{590019} a^{10} + \frac{133303}{1573384} a^{9} - \frac{145135}{786692} a^{8} - \frac{282085}{1573384} a^{7} + \frac{1170713}{4720152} a^{6} + \frac{195305}{4720152} a^{5} + \frac{621543}{1573384} a^{4} - \frac{81001}{205224} a^{3} + \frac{30673}{393346} a^{2} + \frac{26905}{69414} a + \frac{11170}{34707}$, $\frac{1}{321989686779099064440600672} a^{19} - \frac{604158140003602101}{107329895593033021480200224} a^{18} - \frac{14817157924280611739}{321989686779099064440600672} a^{17} + \frac{82948070133126858744275}{321989686779099064440600672} a^{16} - \frac{229022380176483332699023}{321989686779099064440600672} a^{15} + \frac{195569087881206459426427}{321989686779099064440600672} a^{14} + \frac{4641001133112999753562145}{107329895593033021480200224} a^{13} - \frac{6408578010377428993635149}{107329895593033021480200224} a^{12} + \frac{3901466723385680371938161}{160994843389549532220300336} a^{11} - \frac{3301164512759663407716475}{40248710847387383055075084} a^{10} + \frac{3368238946925291254725839}{80497421694774766110150168} a^{9} - \frac{62487636684711160083365}{394595204386150814265442} a^{8} - \frac{11623569450015978473394701}{80497421694774766110150168} a^{7} + \frac{2060914424504235382632253}{26832473898258255370050056} a^{6} + \frac{15740034509438664552334393}{80497421694774766110150168} a^{5} - \frac{1209507084104114332455793}{26832473898258255370050056} a^{4} + \frac{2711910832172175667331033}{40248710847387383055075084} a^{3} - \frac{986977928890727911314398}{10062177711846845763768771} a^{2} - \frac{747016062722261762769066}{3354059237282281921256257} a - \frac{12704645205788017456696}{591892806579226221398163}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38650073.2246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.1083392.5, 5.1.1083392.1 x5, 10.2.9389905805312.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1083392.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |