Properties

Label 20.0.14861658978...8713.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{5}\cdot 11^{19}$
Root discriminant $12.84$
Ramified primes $3, 11$
Class number $1$
Class group Trivial
Galois group $C_5\times D_4$ (as 20T12)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -14, 92, -371, 1016, -1996, 2932, -3348, 3128, -2588, 2057, -1588, 1123, -698, 395, -214, 108, -46, 16, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 16*x^18 - 46*x^17 + 108*x^16 - 214*x^15 + 395*x^14 - 698*x^13 + 1123*x^12 - 1588*x^11 + 2057*x^10 - 2588*x^9 + 3128*x^8 - 3348*x^7 + 2932*x^6 - 1996*x^5 + 1016*x^4 - 371*x^3 + 92*x^2 - 14*x + 1)
 
gp: K = bnfinit(x^20 - 5*x^19 + 16*x^18 - 46*x^17 + 108*x^16 - 214*x^15 + 395*x^14 - 698*x^13 + 1123*x^12 - 1588*x^11 + 2057*x^10 - 2588*x^9 + 3128*x^8 - 3348*x^7 + 2932*x^6 - 1996*x^5 + 1016*x^4 - 371*x^3 + 92*x^2 - 14*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} + 16 x^{18} - 46 x^{17} + 108 x^{16} - 214 x^{15} + 395 x^{14} - 698 x^{13} + 1123 x^{12} - 1588 x^{11} + 2057 x^{10} - 2588 x^{9} + 3128 x^{8} - 3348 x^{7} + 2932 x^{6} - 1996 x^{5} + 1016 x^{4} - 371 x^{3} + 92 x^{2} - 14 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14861658978964734748713=3^{5}\cdot 11^{19}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{7}{23} a^{17} - \frac{9}{23} a^{16} - \frac{8}{23} a^{15} - \frac{8}{23} a^{14} - \frac{1}{23} a^{13} - \frac{4}{23} a^{12} - \frac{7}{23} a^{11} + \frac{5}{23} a^{10} + \frac{9}{23} a^{9} + \frac{4}{23} a^{8} - \frac{3}{23} a^{7} + \frac{11}{23} a^{6} - \frac{10}{23} a^{5} - \frac{7}{23} a^{4} - \frac{5}{23} a^{3} + \frac{11}{23} a^{2} + \frac{9}{23} a - \frac{10}{23}$, $\frac{1}{22332092443} a^{19} - \frac{405185842}{22332092443} a^{18} + \frac{6248587414}{22332092443} a^{17} + \frac{1361723408}{22332092443} a^{16} - \frac{7284615703}{22332092443} a^{15} + \frac{9816693260}{22332092443} a^{14} + \frac{10365062637}{22332092443} a^{13} + \frac{4605014631}{22332092443} a^{12} + \frac{3057372871}{22332092443} a^{11} - \frac{4392053315}{22332092443} a^{10} - \frac{4222339189}{22332092443} a^{9} + \frac{7908870301}{22332092443} a^{8} + \frac{9089785145}{22332092443} a^{7} + \frac{82091825}{22332092443} a^{6} + \frac{10646982395}{22332092443} a^{5} + \frac{11052225531}{22332092443} a^{4} + \frac{4781870836}{22332092443} a^{3} - \frac{9098316457}{22332092443} a^{2} + \frac{5425134077}{22332092443} a + \frac{10685951026}{22332092443}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{498258201233}{22332092443} a^{19} + \frac{2299914328811}{22332092443} a^{18} - \frac{7089012985276}{22332092443} a^{17} + \frac{20192473954921}{22332092443} a^{16} - \frac{46041149717855}{22332092443} a^{15} + \frac{88899555703222}{22332092443} a^{14} - \frac{7066771082192}{970960541} a^{13} + \frac{285094971179593}{22332092443} a^{12} - \frac{449558441453469}{22332092443} a^{11} + \frac{617669905806245}{22332092443} a^{10} - \frac{786154168476411}{22332092443} a^{9} + \frac{985289583822582}{22332092443} a^{8} - \frac{51184177137416}{970960541} a^{7} + \frac{1212360392856302}{22332092443} a^{6} - \frac{990686242950518}{22332092443} a^{5} + \frac{26471731661149}{970960541} a^{4} - \frac{267689714276496}{22332092443} a^{3} + \frac{78856206641197}{22332092443} a^{2} - \frac{611680183799}{970960541} a + \frac{1163961873210}{22332092443} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5805.73215178 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5\times D_4$ (as 20T12):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40
The 25 conjugacy class representatives for $C_5\times D_4$
Character table for $C_5\times D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), 4.0.3993.1, \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{11})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ $20$ R $20$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.0.1$x^{10} - x^{3} - x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
11Data not computed