Normalized defining polynomial
\( x^{20} - x^{19} - 16 x^{18} + 3 x^{17} + 137 x^{16} + 5 x^{15} - 615 x^{14} - 107 x^{13} + 1852 x^{12} + 161 x^{11} - 4157 x^{10} + 322 x^{9} + 7408 x^{8} - 856 x^{7} - 9840 x^{6} + 160 x^{5} + 8768 x^{4} + 384 x^{3} - 4096 x^{2} - 512 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14857952975500019812957201=7^{10}\cdot 47^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{3}{8} a^{10} + \frac{1}{8} a^{9} - \frac{3}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{80} a^{14} + \frac{3}{80} a^{13} - \frac{1}{20} a^{12} - \frac{13}{80} a^{11} + \frac{1}{16} a^{10} + \frac{9}{80} a^{9} - \frac{19}{80} a^{8} + \frac{5}{16} a^{7} - \frac{2}{5} a^{6} - \frac{31}{80} a^{5} - \frac{5}{16} a^{4} - \frac{1}{40} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{160} a^{15} - \frac{1}{160} a^{14} + \frac{1}{40} a^{13} - \frac{17}{160} a^{12} - \frac{23}{160} a^{11} - \frac{31}{160} a^{10} + \frac{9}{32} a^{9} - \frac{39}{160} a^{8} + \frac{3}{10} a^{7} + \frac{37}{160} a^{6} + \frac{19}{160} a^{5} - \frac{21}{80} a^{4} + \frac{19}{40} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{320} a^{16} - \frac{1}{320} a^{15} + \frac{11}{320} a^{13} + \frac{33}{320} a^{12} - \frac{59}{320} a^{11} - \frac{3}{64} a^{10} - \frac{23}{64} a^{9} - \frac{19}{80} a^{8} + \frac{57}{320} a^{7} + \frac{107}{320} a^{6} - \frac{79}{160} a^{5} + \frac{7}{40} a^{4} + \frac{1}{5} a^{3} - \frac{7}{20} a^{2} - \frac{2}{5}$, $\frac{1}{640} a^{17} - \frac{1}{640} a^{16} + \frac{3}{640} a^{14} + \frac{9}{640} a^{13} - \frac{27}{640} a^{12} + \frac{89}{640} a^{11} - \frac{31}{128} a^{10} - \frac{37}{160} a^{9} + \frac{209}{640} a^{8} + \frac{227}{640} a^{7} + \frac{49}{320} a^{6} - \frac{1}{40} a^{5} - \frac{7}{80} a^{4} - \frac{3}{20} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{283021024000} a^{18} - \frac{174961663}{283021024000} a^{17} - \frac{119919781}{141510512000} a^{16} - \frac{289952877}{283021024000} a^{15} - \frac{12188041}{4354169600} a^{14} + \frac{17123161839}{283021024000} a^{13} - \frac{1044880653}{283021024000} a^{12} + \frac{20360215751}{283021024000} a^{11} - \frac{13028157277}{141510512000} a^{10} + \frac{40766088057}{283021024000} a^{9} - \frac{27569399683}{283021024000} a^{8} + \frac{5698106919}{17688814000} a^{7} + \frac{14935722169}{70755256000} a^{6} - \frac{3267813443}{8844407000} a^{5} - \frac{48187947}{272135600} a^{4} + \frac{525645121}{8844407000} a^{3} + \frac{543410744}{1105550875} a^{2} - \frac{174961663}{1105550875} a + \frac{442220352}{1105550875}$, $\frac{1}{566042048000} a^{19} - \frac{1}{566042048000} a^{18} + \frac{110555083}{141510512000} a^{17} + \frac{792143679}{566042048000} a^{16} - \frac{404761439}{566042048000} a^{15} - \frac{1631195991}{566042048000} a^{14} - \frac{4724423047}{113208409600} a^{13} + \frac{10751105173}{113208409600} a^{12} - \frac{1051221289}{4422203500} a^{11} - \frac{196824214891}{566042048000} a^{10} + \frac{136134491451}{566042048000} a^{9} + \frac{19596989879}{283021024000} a^{8} + \frac{22297443431}{141510512000} a^{7} + \frac{26294031067}{70755256000} a^{6} - \frac{6251755737}{35377628000} a^{5} + \frac{6535626891}{17688814000} a^{4} + \frac{1897773677}{8844407000} a^{3} - \frac{103670817}{442220350} a^{2} + \frac{903170071}{2211101750} a + \frac{174961662}{1105550875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18347.7720663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{329}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{-47})\), 5.1.2209.1 x5, 10.0.229345007.1, 10.2.3854601532649.1 x5, 10.0.82012798567.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |