Normalized defining polynomial
\( x^{20} - 4 x^{19} + 11 x^{18} - 14 x^{17} + 27 x^{16} - 4 x^{15} + 76 x^{14} + 26 x^{13} + 242 x^{12} + 186 x^{11} + 1176 x^{10} + 1496 x^{9} + 3207 x^{8} + 3946 x^{7} + 4941 x^{6} + 3726 x^{5} + 4572 x^{4} + 2746 x^{3} + 2191 x^{2} + 686 x + 641 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(146746349255915802001953125=5^{15}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{240} a^{16} - \frac{1}{8} a^{15} + \frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{15} a^{12} - \frac{1}{16} a^{11} + \frac{5}{24} a^{10} - \frac{3}{16} a^{9} + \frac{41}{240} a^{8} + \frac{1}{16} a^{7} - \frac{1}{48} a^{6} + \frac{7}{24} a^{5} - \frac{29}{240} a^{4} - \frac{1}{24} a^{3} + \frac{1}{8} a^{2} - \frac{5}{48} a - \frac{29}{240}$, $\frac{1}{240} a^{17} + \frac{1}{16} a^{15} + \frac{1}{16} a^{14} - \frac{7}{120} a^{13} - \frac{1}{16} a^{12} + \frac{1}{12} a^{11} + \frac{1}{16} a^{10} - \frac{49}{240} a^{9} + \frac{3}{16} a^{8} - \frac{7}{48} a^{7} - \frac{1}{12} a^{6} + \frac{31}{240} a^{5} - \frac{1}{6} a^{4} + \frac{1}{8} a^{3} - \frac{5}{48} a^{2} + \frac{61}{240} a - \frac{3}{8}$, $\frac{1}{37200} a^{18} - \frac{17}{37200} a^{17} + \frac{13}{18600} a^{16} + \frac{21}{248} a^{15} + \frac{256}{2325} a^{14} - \frac{1}{18600} a^{13} - \frac{4349}{37200} a^{12} - \frac{23}{744} a^{11} + \frac{981}{6200} a^{10} - \frac{9157}{37200} a^{9} - \frac{5749}{37200} a^{8} + \frac{13}{186} a^{7} + \frac{319}{9300} a^{6} - \frac{6517}{37200} a^{5} + \frac{12031}{37200} a^{4} - \frac{111}{496} a^{3} + \frac{107}{775} a^{2} - \frac{3011}{18600} a - \frac{14989}{37200}$, $\frac{1}{167665766085357659454000} a^{19} - \frac{706799386761315043}{167665766085357659454000} a^{18} + \frac{40228108494854159281}{55888588695119219818000} a^{17} - \frac{143695492746124894751}{167665766085357659454000} a^{16} - \frac{522021554896112207159}{5408573099527666434000} a^{15} + \frac{244355358888549307022}{10479110380334853715875} a^{14} + \frac{1645169019413775313591}{20958220760669707431750} a^{13} - \frac{2958739112330050581901}{167665766085357659454000} a^{12} + \frac{33183195543252153762761}{167665766085357659454000} a^{11} - \frac{5749904719079623719603}{27944294347559609909000} a^{10} + \frac{12327675301056420302983}{167665766085357659454000} a^{9} - \frac{7842035964209956317319}{41916441521339414863500} a^{8} - \frac{820466785910682230188}{3493036793444951238625} a^{7} + \frac{8011058200460170100033}{41916441521339414863500} a^{6} - \frac{2597843682874595580763}{41916441521339414863500} a^{5} + \frac{10054171066180699818399}{27944294347559609909000} a^{4} - \frac{26522782651085397523507}{83832883042678829727000} a^{3} + \frac{39198320662780616925917}{167665766085357659454000} a^{2} + \frac{46254910164415329388883}{167665766085357659454000} a - \frac{28340611811854936036511}{167665766085357659454000}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72096.60689 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.171125.1, 5.1.171125.1 x5, 10.2.146418828125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.171125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $37$ | 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |