Normalized defining polynomial
\( x^{20} - x^{19} - 16 x^{18} + 15 x^{17} + 140 x^{16} - 106 x^{15} - 609 x^{14} + 388 x^{13} + 1656 x^{12} - 814 x^{11} - 2628 x^{10} + 827 x^{9} + 2615 x^{8} - 246 x^{7} - 1201 x^{6} + 121 x^{5} + 310 x^{4} - 56 x^{3} - 21 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14658323082243334363275748982757=3^{10}\cdot 13^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{2}{9} a^{12} + \frac{1}{3} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} + \frac{4}{9} a^{8} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{9} a^{11} - \frac{4}{9} a^{10} - \frac{1}{3} a^{9} - \frac{4}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{272367} a^{18} - \frac{2300}{272367} a^{17} + \frac{9251}{272367} a^{16} + \frac{6886}{272367} a^{15} + \frac{16216}{272367} a^{14} - \frac{122003}{272367} a^{13} - \frac{101414}{272367} a^{12} + \frac{131521}{272367} a^{11} - \frac{108991}{272367} a^{10} + \frac{72674}{272367} a^{9} - \frac{539}{1713} a^{8} + \frac{96395}{272367} a^{7} + \frac{117653}{272367} a^{6} + \frac{60362}{272367} a^{5} - \frac{73630}{272367} a^{4} - \frac{116623}{272367} a^{3} - \frac{38893}{90789} a^{2} + \frac{11392}{30263} a + \frac{68410}{272367}$, $\frac{1}{45694975365189} a^{19} + \frac{32020141}{45694975365189} a^{18} - \frac{1306601693285}{45694975365189} a^{17} + \frac{1206487187066}{45694975365189} a^{16} - \frac{113787424594}{801666234477} a^{15} - \frac{6466126871662}{45694975365189} a^{14} + \frac{303764927923}{2404998703431} a^{13} + \frac{1572301346977}{15231658455063} a^{12} + \frac{4956975949204}{15231658455063} a^{11} + \frac{7377557600276}{45694975365189} a^{10} + \frac{1997982611}{862169346513} a^{9} - \frac{9151573685342}{45694975365189} a^{8} - \frac{471469228997}{45694975365189} a^{7} + \frac{8278989162671}{45694975365189} a^{6} - \frac{766121046531}{1692406495007} a^{5} - \frac{15387787960670}{45694975365189} a^{4} + \frac{5304847046957}{15231658455063} a^{3} + \frac{13817367459544}{45694975365189} a^{2} - \frac{13220985449410}{45694975365189} a + \frac{266537284586}{862169346513}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{118903}{272367} a^{19} - \frac{94222}{272367} a^{18} - \frac{1932344}{272367} a^{17} + \frac{155988}{30263} a^{16} + \frac{17080954}{272367} a^{15} - \frac{9375335}{272367} a^{14} - \frac{75466706}{272367} a^{13} + \frac{32878618}{272367} a^{12} + \frac{207394469}{272367} a^{11} - \frac{20890214}{90789} a^{10} - \frac{332398558}{272367} a^{9} + \frac{48841120}{272367} a^{8} + \frac{6124150}{5139} a^{7} + \frac{17382971}{272367} a^{6} - \frac{137442280}{272367} a^{5} - \frac{3666115}{272367} a^{4} + \frac{10181270}{90789} a^{3} - \frac{3063896}{272367} a^{2} - \frac{322271}{90789} a + \frac{136604}{272367} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19881261.2295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.117.1, 5.5.160801.1, 10.0.6283241669043.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||