Normalized defining polynomial
\( x^{20} - 3 x^{19} + 13 x^{18} - 45 x^{17} + 181 x^{16} - 277 x^{15} + 1527 x^{14} - 1917 x^{13} + 6069 x^{12} - 8567 x^{11} + 22087 x^{10} + 8548 x^{9} + 131627 x^{8} + 225444 x^{7} + 530121 x^{6} + 803419 x^{5} + 996120 x^{4} + 1044920 x^{3} + 674906 x^{2} + 243078 x + 96739 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1465621300755332525247833251953125=5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{392825534163300480258852205971731849193375807517036001909} a^{19} - \frac{110602621885439021310407239044848030952486150610825528090}{392825534163300480258852205971731849193375807517036001909} a^{18} + \frac{82977953221965782372811889768202017074237921420441501673}{392825534163300480258852205971731849193375807517036001909} a^{17} - \frac{9364586468479207017098749864025514461674605245455625870}{23107384362547087074050129763043049952551518089237411877} a^{16} - \frac{72829498650470423831281973706147028699905524259640816062}{392825534163300480258852205971731849193375807517036001909} a^{15} - \frac{46381263465365463303319572913711084638931912638099354490}{392825534163300480258852205971731849193375807517036001909} a^{14} + \frac{125956125479510411298935023313696798335250494957596479472}{392825534163300480258852205971731849193375807517036001909} a^{13} - \frac{192417239323721183322231858866298563306833472491555271396}{392825534163300480258852205971731849193375807517036001909} a^{12} - \frac{64917961329219197354331846530754001162645185159309455447}{392825534163300480258852205971731849193375807517036001909} a^{11} + \frac{88080134207267401673946968246710525697844036553476115881}{392825534163300480258852205971731849193375807517036001909} a^{10} - \frac{98956393983773920048580714072436728096826201156457869606}{392825534163300480258852205971731849193375807517036001909} a^{9} - \frac{4473961595689267388116761723520524278171714787579090381}{392825534163300480258852205971731849193375807517036001909} a^{8} - \frac{145330792715476272587542567026770907161946853278859302896}{392825534163300480258852205971731849193375807517036001909} a^{7} + \frac{99237600884991325553541776231317657855374927705078178606}{392825534163300480258852205971731849193375807517036001909} a^{6} - \frac{150003832845430703087327121264620361979564954191501686139}{392825534163300480258852205971731849193375807517036001909} a^{5} + \frac{44029312803019099496444623847026330523892129180837333120}{392825534163300480258852205971731849193375807517036001909} a^{4} - \frac{84390510660952124011721164598759558418392008339884342284}{392825534163300480258852205971731849193375807517036001909} a^{3} - \frac{22881319924239390851568583418112625498495083100524438117}{392825534163300480258852205971731849193375807517036001909} a^{2} - \frac{158191141264498465588843648673771546242339458943978142314}{392825534163300480258852205971731849193375807517036001909} a + \frac{67827543605994755071393635558147641358406439283123803810}{392825534163300480258852205971731849193375807517036001909}$
Class group and class number
$C_{2}\times C_{212}$, which has order $424$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n369 are not computed |
| Character table for t20n369 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||