Normalized defining polynomial
\( x^{20} + 1482 x^{18} + 908011 x^{16} + 302386742 x^{14} + 60210051505 x^{12} + 7402326813897 x^{10} + 558955523693880 x^{8} + 24949694443593628 x^{6} + 609669460579370325 x^{4} + 7161290933362126941 x^{2} + 31142373916142055599 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14653272768072533214308458573932333455360000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 7919^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $287.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 7919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7919} a^{12} + \frac{1482}{7919} a^{10} - \frac{2674}{7919} a^{8} - \frac{273}{7919} a^{6} + \frac{1864}{7919} a^{4} - \frac{2934}{7919} a^{2}$, $\frac{1}{7919} a^{13} + \frac{1482}{7919} a^{11} - \frac{2674}{7919} a^{9} - \frac{273}{7919} a^{7} + \frac{1864}{7919} a^{5} - \frac{2934}{7919} a^{3}$, $\frac{1}{62710561} a^{14} + \frac{1482}{62710561} a^{12} + \frac{908011}{62710561} a^{10} - \frac{11166063}{62710561} a^{8} + \frac{7912945}{62710561} a^{6} - \frac{27806543}{62710561} a^{4} - \frac{1420}{7919} a^{2}$, $\frac{1}{62710561} a^{15} + \frac{1482}{62710561} a^{13} + \frac{908011}{62710561} a^{11} - \frac{11166063}{62710561} a^{9} + \frac{7912945}{62710561} a^{7} - \frac{27806543}{62710561} a^{5} - \frac{1420}{7919} a^{3}$, $\frac{1}{496604932559} a^{16} + \frac{1482}{496604932559} a^{14} + \frac{908011}{496604932559} a^{12} + \frac{302386742}{496604932559} a^{10} + \frac{60210051505}{496604932559} a^{8} - \frac{46747174488}{496604932559} a^{6} - \frac{27987166}{62710561} a^{4} - \frac{3731}{7919} a^{2}$, $\frac{1}{496604932559} a^{17} + \frac{1482}{496604932559} a^{15} + \frac{908011}{496604932559} a^{13} + \frac{302386742}{496604932559} a^{11} + \frac{60210051505}{496604932559} a^{9} - \frac{46747174488}{496604932559} a^{7} - \frac{27987166}{62710561} a^{5} - \frac{3731}{7919} a^{3}$, $\frac{1}{16857841814085607403800809758296071730914697792906672347371449} a^{18} + \frac{943305247306667776866066604994017340641197072}{189413952967254015773042806272989570010277503291086206150241} a^{16} - \frac{12906117316708556841192130798123462531162998141007556}{16857841814085607403800809758296071730914697792906672347371449} a^{14} - \frac{898060785177183380778213720539207467468411124308626326411}{16857841814085607403800809758296071730914697792906672347371449} a^{12} - \frac{2483131082799552425464382270468248549322335502169374626001845}{16857841814085607403800809758296071730914697792906672347371449} a^{10} - \frac{3845344679969273364520340427385801705540315610350609421593535}{16857841814085607403800809758296071730914697792906672347371449} a^{8} - \frac{253545732401666891536888460065779490362570025315867161}{2128784166445966334613058436456127254819383481867239846871} a^{6} - \frac{95207608734740529757814792618822372951377667905817863}{268819821498417266651478524618781065136934395992832409} a^{4} + \frac{10818739021731712189268811646618768229691554721044}{33946182788030971922146549389920579004537744158711} a^{2} + \frac{863690353782274724471630507129443643819231758}{4286675437306600823607343021836163531321851769}$, $\frac{1}{16857841814085607403800809758296071730914697792906672347371449} a^{19} + \frac{943305247306667776866066604994017340641197072}{189413952967254015773042806272989570010277503291086206150241} a^{17} - \frac{12906117316708556841192130798123462531162998141007556}{16857841814085607403800809758296071730914697792906672347371449} a^{15} - \frac{898060785177183380778213720539207467468411124308626326411}{16857841814085607403800809758296071730914697792906672347371449} a^{13} - \frac{2483131082799552425464382270468248549322335502169374626001845}{16857841814085607403800809758296071730914697792906672347371449} a^{11} - \frac{3845344679969273364520340427385801705540315610350609421593535}{16857841814085607403800809758296071730914697792906672347371449} a^{9} - \frac{253545732401666891536888460065779490362570025315867161}{2128784166445966334613058436456127254819383481867239846871} a^{7} - \frac{95207608734740529757814792618822372951377667905817863}{268819821498417266651478524618781065136934395992832409} a^{5} + \frac{10818739021731712189268811646618768229691554721044}{33946182788030971922146549389920579004537744158711} a^{3} + \frac{863690353782274724471630507129443643819231758}{4286675437306600823607343021836163531321851769} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{3136325784}$, which has order $100362425088$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 7919 | Data not computed | ||||||