Normalized defining polynomial
\( x^{20} + 44 x^{18} - 37 x^{17} + 769 x^{16} - 1799 x^{15} + 8136 x^{14} - 27411 x^{13} + 76643 x^{12} - 217497 x^{11} + 553045 x^{10} - 1184443 x^{9} + 2527476 x^{8} - 4505558 x^{7} + 7673064 x^{6} - 12834474 x^{5} + 19281736 x^{4} - 24949939 x^{3} + 27457237 x^{2} - 17683985 x + 5729201 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(145671521378968039543605010986328125=3^{6}\cdot 5^{15}\cdot 23^{6}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{19} + \frac{133189820786561001453062548418185419286219638011215522355637736986784}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{18} + \frac{247319958792139138257217362168914233858977946333634439459336733416656}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{17} + \frac{2588612033005735712694180115898728540171351218322471446125442430938560}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{16} - \frac{1889289619801055079612376821428093540317436033391347046821272892250324}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{15} - \frac{148140072634987223764752421154824555897945381484234116404972255934230}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{14} - \frac{350821134467336180815480001186170595869560422343577606533205674275317}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{13} - \frac{479716630312961410329177202541767950634142666340117287160346304009992}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{12} + \frac{487117206966334920657351390043728181367028644939548551733664680535813}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{11} + \frac{294738456057772447757857792999687639554232073673666311853727133142120}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{10} - \frac{1219481191279908760209860490710622264058549437655107225978616351849994}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{9} - \frac{1557329682267822386695159931631978857578026134528427127378464408655726}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{8} - \frac{1616310724358589916007953901372575052167544927542986791282442897775533}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{7} - \frac{1169795685909783271415252305794893799303657129030702094820934842618841}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{6} - \frac{266827560746375790169653391316705446165206497420259484292005050530475}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{5} + \frac{66147705443336241797498693852862357670036744303275982163466450424623}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{4} - \frac{1503175880361443030147603956732014700854997762350667415284943828575173}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{3} + \frac{461274982996937196093669217355394295608883101851450836069177080658184}{5856680640395023908205540972837553051312728126817896719794318834894899} a^{2} - \frac{406068354584435030838011265712872343886795298079002001110910115942608}{5856680640395023908205540972837553051312728126817896719794318834894899} a - \frac{2409443806558262945557858262399763658123049567875580538056980379080917}{5856680640395023908205540972837553051312728126817896719794318834894899}$
Class group and class number
$C_{2}\times C_{2}\times C_{1156}$, which has order $4624$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366014.001413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.8.6.2 | $x^{8} - 1633 x^{4} + 1270129$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||