Normalized defining polynomial
\( x^{20} - 8 x^{19} + 36 x^{18} - 128 x^{17} + 346 x^{16} - 686 x^{15} + 992 x^{14} - 774 x^{13} - 612 x^{12} + 2794 x^{11} - 3735 x^{10} + 1380 x^{9} + 2754 x^{8} - 4158 x^{7} + 1168 x^{6} + 2560 x^{5} - 1014 x^{4} - 1902 x^{3} + 542 x^{2} + 624 x + 153 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1446978531682831584079714975744=2^{20}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{123} a^{17} - \frac{8}{123} a^{16} + \frac{11}{123} a^{15} - \frac{5}{41} a^{14} + \frac{29}{123} a^{13} + \frac{1}{41} a^{12} + \frac{14}{123} a^{11} + \frac{31}{123} a^{10} + \frac{7}{123} a^{9} + \frac{22}{123} a^{8} + \frac{35}{123} a^{7} + \frac{19}{41} a^{6} + \frac{2}{41} a^{5} + \frac{23}{123} a^{4} + \frac{12}{41} a^{3} - \frac{18}{41} a^{2} + \frac{7}{41} a + \frac{2}{41}$, $\frac{1}{6519} a^{18} + \frac{7}{2173} a^{17} - \frac{877}{6519} a^{16} + \frac{1042}{6519} a^{15} - \frac{611}{6519} a^{14} - \frac{607}{2173} a^{13} - \frac{841}{2173} a^{12} + \frac{9}{2173} a^{11} + \frac{2341}{6519} a^{10} - \frac{2317}{6519} a^{9} + \frac{853}{2173} a^{8} + \frac{662}{6519} a^{7} + \frac{1454}{6519} a^{6} + \frac{238}{6519} a^{5} - \frac{1064}{2173} a^{4} + \frac{1277}{6519} a^{3} + \frac{382}{6519} a^{2} + \frac{55}{159} a + \frac{304}{2173}$, $\frac{1}{673330795240187622020152347} a^{19} + \frac{22181988927499705225357}{673330795240187622020152347} a^{18} + \frac{759734518528976295195820}{224443598413395874006717449} a^{17} + \frac{105966724233498252025245736}{673330795240187622020152347} a^{16} - \frac{90665588427095733034888943}{673330795240187622020152347} a^{15} - \frac{62260735792738612014648638}{673330795240187622020152347} a^{14} - \frac{181279352064192353006631736}{673330795240187622020152347} a^{13} + \frac{45416381745361901195715109}{224443598413395874006717449} a^{12} - \frac{32883003780847416900990835}{224443598413395874006717449} a^{11} - \frac{19368298586861418949176302}{673330795240187622020152347} a^{10} - \frac{70226806551685464653400007}{224443598413395874006717449} a^{9} + \frac{2017297686200703316107634}{4234784875724450452956933} a^{8} - \frac{32531258358263396254138983}{74814532804465291335572483} a^{7} + \frac{11820994012590724131617873}{224443598413395874006717449} a^{6} + \frac{56673863428622202471803662}{673330795240187622020152347} a^{5} - \frac{193945197502253241137138612}{673330795240187622020152347} a^{4} + \frac{20060150634795355071597745}{74814532804465291335572483} a^{3} + \frac{4436422334884483512545061}{74814532804465291335572483} a^{2} + \frac{95437711480947434166240371}{673330795240187622020152347} a + \frac{76436319729821383129842365}{224443598413395874006717449}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{9771247905794102}{4496688501934984371} a^{19} - \frac{85981938580996600}{4496688501934984371} a^{18} + \frac{137296221640318966}{1498896167311661457} a^{17} - \frac{1515555019964441038}{4496688501934984371} a^{16} + \frac{4315341215380311617}{4496688501934984371} a^{15} - \frac{9187895945902766416}{4496688501934984371} a^{14} + \frac{14528212489567384348}{4496688501934984371} a^{13} - \frac{4818753443075223727}{1498896167311661457} a^{12} - \frac{290520465355069993}{1498896167311661457} a^{11} + \frac{32091374658823631702}{4496688501934984371} a^{10} - \frac{6231291731679425208}{499632055770553819} a^{9} + \frac{4340524368285863664}{499632055770553819} a^{8} + \frac{5704370490953934985}{1498896167311661457} a^{7} - \frac{18787684468924276559}{1498896167311661457} a^{6} + \frac{35216842558375670618}{4496688501934984371} a^{5} + \frac{18439340900833984214}{4496688501934984371} a^{4} - \frac{2523089485617295884}{499632055770553819} a^{3} - \frac{2310414523356107875}{499632055770553819} a^{2} + \frac{16701053283457885345}{4496688501934984371} a + \frac{1934483219623708516}{1498896167311661457} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7826958.70528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-53}) \), \(\Q(\sqrt{53}) \), \(\Q(i, \sqrt{53})\), 5.5.2382032.1, 10.0.22696305796096.1, 10.0.1202904207193088.1, 10.10.300726051798272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 53 | Data not computed | ||||||