Normalized defining polynomial
\( x^{20} + 117 x^{18} + 5400 x^{16} + 130685 x^{14} + 1837652 x^{12} + 15602353 x^{10} + 80109940 x^{8} + 240789391 x^{6} + 390385852 x^{4} + 280747417 x^{2} + 47458321 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(144516905723267215365502945884368797696=2^{36}\cdot 83^{8}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{83} a^{14} + \frac{34}{83} a^{12} + \frac{5}{83} a^{10} - \frac{40}{83} a^{8} + \frac{32}{83} a^{6} + \frac{13}{83} a^{4}$, $\frac{1}{83} a^{15} + \frac{34}{83} a^{13} + \frac{5}{83} a^{11} - \frac{40}{83} a^{9} + \frac{32}{83} a^{7} + \frac{13}{83} a^{5}$, $\frac{1}{6889} a^{16} + \frac{34}{6889} a^{14} + \frac{2578}{6889} a^{12} - \frac{621}{6889} a^{10} + \frac{1609}{6889} a^{8} + \frac{3001}{6889} a^{6} - \frac{40}{83} a^{4} - \frac{22}{83} a^{2}$, $\frac{1}{6889} a^{17} + \frac{34}{6889} a^{15} + \frac{2578}{6889} a^{13} - \frac{621}{6889} a^{11} + \frac{1609}{6889} a^{9} + \frac{3001}{6889} a^{7} - \frac{40}{83} a^{5} - \frac{22}{83} a^{3}$, $\frac{1}{65557026490059112918364031769} a^{18} - \frac{1351179661983242984945015}{65557026490059112918364031769} a^{16} + \frac{329884420649082083979902794}{65557026490059112918364031769} a^{14} - \frac{22567935750886009135109078870}{65557026490059112918364031769} a^{12} + \frac{27273628120167631336984333786}{65557026490059112918364031769} a^{10} - \frac{23659882440412791434670586774}{65557026490059112918364031769} a^{8} - \frac{1075796484863789770235153}{2491620481549888370581279} a^{6} - \frac{147212757613450021000943109}{789843692651314613474265443} a^{4} + \frac{2767316352005916473052086}{9516189068088127873183921} a^{2} - \frac{34945074875492313097379}{114652880338411179194987}$, $\frac{1}{65557026490059112918364031769} a^{19} - \frac{1351179661983242984945015}{65557026490059112918364031769} a^{17} + \frac{329884420649082083979902794}{65557026490059112918364031769} a^{15} - \frac{22567935750886009135109078870}{65557026490059112918364031769} a^{13} + \frac{27273628120167631336984333786}{65557026490059112918364031769} a^{11} - \frac{23659882440412791434670586774}{65557026490059112918364031769} a^{9} - \frac{1075796484863789770235153}{2491620481549888370581279} a^{7} - \frac{147212757613450021000943109}{789843692651314613474265443} a^{5} + \frac{2767316352005916473052086}{9516189068088127873183921} a^{3} - \frac{34945074875492313097379}{114652880338411179194987} a$
Class group and class number
$C_{2}\times C_{2}\times C_{47536}$, which has order $190144$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272473.726744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 155 conjugacy class representatives for t20n964 are not computed |
| Character table for t20n964 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||