Normalized defining polynomial
\( x^{20} + 410 x^{18} + 61500 x^{16} + 4510000 x^{14} + 177726800 x^{12} + 3804144000 x^{10} + 41636320000 x^{8} + 201697040000 x^{6} + 427036320000 x^{4} + 350697600000 x^{2} + 95644800000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143993607607707341901348341362229248000000000000000=2^{30}\cdot 5^{15}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $322.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1640=2^{3}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1640}(1,·)$, $\chi_{1640}(197,·)$, $\chi_{1640}(1089,·)$, $\chi_{1640}(961,·)$, $\chi_{1640}(201,·)$, $\chi_{1640}(1281,·)$, $\chi_{1640}(717,·)$, $\chi_{1640}(77,·)$, $\chi_{1640}(209,·)$, $\chi_{1640}(237,·)$, $\chi_{1640}(213,·)$, $\chi_{1640}(333,·)$, $\chi_{1640}(409,·)$, $\chi_{1640}(1437,·)$, $\chi_{1640}(613,·)$, $\chi_{1640}(1041,·)$, $\chi_{1640}(173,·)$, $\chi_{1640}(1009,·)$, $\chi_{1640}(1333,·)$, $\chi_{1640}(769,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{60} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{60} a^{5} + \frac{1}{3} a$, $\frac{1}{360} a^{6} - \frac{1}{180} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{360} a^{7} - \frac{1}{180} a^{5} - \frac{1}{18} a^{3} + \frac{1}{3} a$, $\frac{1}{10800} a^{8} + \frac{1}{180} a^{4} + \frac{1}{54} a^{2} + \frac{1}{3}$, $\frac{1}{32400} a^{9} - \frac{1}{1080} a^{7} - \frac{1}{135} a^{5} + \frac{2}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{64800} a^{10} - \frac{1}{1080} a^{6} + \frac{1}{810} a^{4} - \frac{13}{54} a^{2} - \frac{1}{3}$, $\frac{1}{64800} a^{11} - \frac{1}{1080} a^{7} + \frac{1}{810} a^{5} - \frac{2}{27} a^{3}$, $\frac{1}{5832000} a^{12} - \frac{1}{583200} a^{10} + \frac{1}{97200} a^{8} + \frac{17}{14580} a^{6} - \frac{113}{14580} a^{4} - \frac{17}{162} a^{2} + \frac{2}{9}$, $\frac{1}{17496000} a^{13} - \frac{1}{1749600} a^{11} + \frac{1}{291600} a^{9} - \frac{47}{87480} a^{7} - \frac{8}{10935} a^{5} + \frac{19}{486} a^{3} - \frac{7}{27} a$, $\frac{1}{34992000} a^{14} + \frac{1}{17496000} a^{12} - \frac{1}{583200} a^{10} + \frac{13}{437400} a^{8} - \frac{71}{87480} a^{6} - \frac{103}{14580} a^{4} - \frac{37}{162} a^{2} + \frac{4}{9}$, $\frac{1}{34992000} a^{15} - \frac{1}{874800} a^{11} - \frac{1}{218700} a^{9} + \frac{19}{29160} a^{7} + \frac{47}{43740} a^{5} + \frac{10}{243} a^{3} + \frac{7}{27} a$, $\frac{1}{9447840000} a^{16} + \frac{1}{944784000} a^{14} - \frac{1}{29524500} a^{12} - \frac{11}{1889568} a^{10} + \frac{1}{118098} a^{8} - \frac{1193}{1180980} a^{6} + \frac{17}{4374} a^{4} - \frac{89}{486} a^{2} - \frac{11}{81}$, $\frac{1}{9447840000} a^{17} + \frac{1}{944784000} a^{15} + \frac{11}{472392000} a^{13} - \frac{151}{23619600} a^{11} + \frac{281}{23619600} a^{9} + \frac{1453}{1180980} a^{7} - \frac{7}{2916} a^{5} - \frac{8}{243} a^{3} + \frac{22}{81} a$, $\frac{1}{57383893782720000} a^{18} + \frac{126329}{9563982297120000} a^{16} - \frac{3084179}{239099557428000} a^{14} - \frac{49291709}{1434597344568000} a^{12} - \frac{4991617}{11954977871400} a^{10} - \frac{51997313}{2988744467850} a^{8} + \frac{1948065721}{1434597344568} a^{6} - \frac{112945819}{33208271865} a^{4} + \frac{183429151}{1475923194} a^{2} - \frac{23511395}{245987199}$, $\frac{1}{57383893782720000} a^{19} + \frac{126329}{9563982297120000} a^{17} - \frac{3084179}{239099557428000} a^{15} + \frac{4088003}{179324668071000} a^{13} - \frac{47298379}{47819911485600} a^{11} - \frac{333982771}{23909955742800} a^{9} + \frac{2943264577}{3586493361420} a^{7} - \frac{137240851}{33208271865} a^{5} - \frac{4857347}{1475923194} a^{3} + \frac{76705612}{245987199} a$
Class group and class number
$C_{2}\times C_{2}\times C_{6653372708}$, which has order $26613490832$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3541438824.6395073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{205}) \), 4.0.551368000.3, 5.5.2825761.1, 10.10.1023068544981128125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||