Normalized defining polynomial
\( x^{20} - 6 x^{18} + 26 x^{16} - 222 x^{15} + 330 x^{14} + 690 x^{13} - 1266 x^{12} - 1920 x^{11} + 25630 x^{10} - 101226 x^{9} + 139181 x^{8} - 84090 x^{7} + 184336 x^{6} - 197640 x^{5} + 2009536 x^{4} - 4678560 x^{3} + 5809600 x^{2} - 5184000 x + 2560000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143685904663725311070484819161855201=3^{10}\cdot 1093^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1093$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{7}{32} a^{6} - \frac{5}{32} a^{5} - \frac{7}{32} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{12} + \frac{3}{160} a^{11} - \frac{1}{20} a^{10} - \frac{1}{40} a^{9} - \frac{7}{80} a^{8} - \frac{19}{160} a^{7} + \frac{7}{160} a^{6} + \frac{19}{160} a^{5} - \frac{17}{80} a^{4} + \frac{29}{80} a^{3} - \frac{3}{40} a^{2} + \frac{3}{20} a$, $\frac{1}{160} a^{14} + \frac{1}{80} a^{12} - \frac{1}{32} a^{11} + \frac{1}{20} a^{10} + \frac{1}{80} a^{9} + \frac{7}{160} a^{8} - \frac{3}{40} a^{7} + \frac{13}{80} a^{6} - \frac{3}{32} a^{5} + \frac{1}{40} a^{4} + \frac{13}{80} a^{3} - \frac{7}{40} a^{2} + \frac{3}{20} a$, $\frac{1}{160} a^{15} + \frac{1}{80} a^{12} - \frac{3}{160} a^{11} + \frac{3}{160} a^{10} + \frac{1}{32} a^{9} - \frac{7}{80} a^{8} - \frac{3}{80} a^{7} + \frac{1}{10} a^{6} + \frac{21}{160} a^{5} - \frac{1}{160} a^{4} - \frac{1}{40} a^{3} + \frac{3}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{640} a^{16} + \frac{1}{640} a^{15} + \frac{1}{640} a^{14} - \frac{1}{640} a^{13} - \frac{1}{640} a^{12} - \frac{9}{640} a^{11} + \frac{7}{128} a^{10} + \frac{3}{128} a^{9} + \frac{19}{640} a^{8} - \frac{15}{128} a^{7} - \frac{123}{640} a^{6} + \frac{13}{640} a^{5} - \frac{1}{10} a^{4} + \frac{29}{160} a^{3} - \frac{17}{40} a^{2} - \frac{1}{40} a$, $\frac{1}{640} a^{17} - \frac{1}{320} a^{14} - \frac{1}{80} a^{12} + \frac{1}{160} a^{11} + \frac{1}{32} a^{10} - \frac{9}{160} a^{9} + \frac{33}{320} a^{8} + \frac{1}{20} a^{7} + \frac{7}{80} a^{6} - \frac{117}{640} a^{5} + \frac{3}{32} a^{4} + \frac{53}{160} a^{3} + \frac{1}{40} a^{2} - \frac{9}{40} a$, $\frac{1}{1134001350400} a^{18} - \frac{14215765}{22680027008} a^{17} - \frac{110341269}{283500337600} a^{16} - \frac{5245829}{22680027008} a^{15} - \frac{885114521}{283500337600} a^{14} - \frac{44438643}{283500337600} a^{13} + \frac{23757541}{2984214080} a^{12} + \frac{150190905}{11340013504} a^{11} + \frac{1269350087}{35437542200} a^{10} - \frac{345580153}{5968428160} a^{9} + \frac{6329508921}{56700067520} a^{8} - \frac{5343875109}{283500337600} a^{7} + \frac{252969278131}{1134001350400} a^{6} - \frac{9943328161}{113400135040} a^{5} - \frac{5004860771}{283500337600} a^{4} - \frac{677676911}{28350033760} a^{3} - \frac{25242950719}{70875084400} a^{2} - \frac{2804814629}{7087508440} a - \frac{28960203}{177187711}$, $\frac{1}{101064672131882127441703699120960000} a^{19} + \frac{894262339844252077227}{10106467213188212744170369912096000} a^{18} + \frac{11166982910446184969580075930947}{50532336065941063720851849560480000} a^{17} - \frac{94066769317529169212519595499}{265959663504952966951851839792000} a^{16} + \frac{126588771156781073740811219881313}{50532336065941063720851849560480000} a^{15} + \frac{131345555664702774748355849566399}{50532336065941063720851849560480000} a^{14} + \frac{21635099436587114411866544796779}{10106467213188212744170369912096000} a^{13} - \frac{101963589977458405810564832297001}{10106467213188212744170369912096000} a^{12} - \frac{302149271254774452619919889493983}{50532336065941063720851849560480000} a^{11} - \frac{155020604492711966548552856196837}{5053233606594106372085184956048000} a^{10} - \frac{57411111839452230220377109981817}{10106467213188212744170369912096000} a^{9} - \frac{3106112475568909272685490118867563}{50532336065941063720851849560480000} a^{8} + \frac{9690593941340436082605990009811161}{101064672131882127441703699120960000} a^{7} - \frac{46241605291782889023793498645031}{5053233606594106372085184956048000} a^{6} - \frac{228362933738437523939268936528627}{3158271004121316482553240597530000} a^{5} - \frac{49584423787692246959352552934181}{315827100412131648255324059753000} a^{4} - \frac{679032702730593615096992881153451}{1579135502060658241276620298765000} a^{3} - \frac{80030473085746241179415648117287}{315827100412131648255324059753000} a^{2} - \frac{1626136372184444535769898644493}{3324495793811912086898147997400} a + \frac{304862790894462280647372193183}{1579135502060658241276620298765}$
Class group and class number
$C_{11}\times C_{286}$, which has order $3146$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{347641195001021805567}{570381950088412889095360000} a^{19} - \frac{14942919787370220921}{14259548752210322227384000} a^{18} + \frac{851467559838550182301}{285190975044206444547680000} a^{17} + \frac{22632679806808001919}{3564887188052580556846000} a^{16} - \frac{3585747220941091674971}{285190975044206444547680000} a^{15} + \frac{29664017753165292214017}{285190975044206444547680000} a^{14} + \frac{1017153819001375471657}{57038195008841288909536000} a^{13} - \frac{33621267633550665842483}{57038195008841288909536000} a^{12} - \frac{62584997554860196341889}{285190975044206444547680000} a^{11} + \frac{7236268977505988158963}{3564887188052580556846000} a^{10} - \frac{692675353828770203285861}{57038195008841288909536000} a^{9} + \frac{10014231248911813310832971}{285190975044206444547680000} a^{8} + \frac{543675208005502505873213}{570381950088412889095360000} a^{7} - \frac{1020534751912049116518221}{57038195008841288909536000} a^{6} - \frac{1120229355695992045088433}{8912217970131451392115000} a^{5} - \frac{609363429218920013711609}{14259548752210322227384000} a^{4} - \frac{4479565034692954898449329}{4456108985065725696057500} a^{3} + \frac{2625684995800135756078383}{3564887188052580556846000} a^{2} - \frac{118935824276283978386981}{356488718805258055684600} a + \frac{7766529071475718711009}{8912217970131451392115} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25892885.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{1093}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3279}) \), \(\Q(\sqrt{-3}, \sqrt{1093})\), 5.5.1194649.1 x5, 10.10.1559914552888693.1, 10.0.346806254667843.1 x5, 10.0.379059236351952399.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 1093 | Data not computed | ||||||