Normalized defining polynomial
\( x^{20} - 2 x^{19} + 47 x^{18} - 14 x^{17} + 1749 x^{16} - 2746 x^{15} + 62644 x^{14} - 141064 x^{13} + 1652989 x^{12} - 4345934 x^{11} + 34853312 x^{10} - 94607688 x^{9} + 555153715 x^{8} - 1401208766 x^{7} + 6430262311 x^{6} - 14260973952 x^{5} + 51507614372 x^{4} - 88916147662 x^{3} + 237984762200 x^{2} - 239603764752 x + 431056760849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1433959691353304658297222439453390274560000000000=2^{30}\cdot 5^{10}\cdot 61^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $255.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2440=2^{3}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2440}(1,·)$, $\chi_{2440}(1219,·)$, $\chi_{2440}(1099,·)$, $\chi_{2440}(81,·)$, $\chi_{2440}(339,·)$, $\chi_{2440}(601,·)$, $\chi_{2440}(1179,·)$, $\chi_{2440}(979,·)$, $\chi_{2440}(881,·)$, $\chi_{2440}(1699,·)$, $\chi_{2440}(2321,·)$, $\chi_{2440}(41,·)$, $\chi_{2440}(619,·)$, $\chi_{2440}(241,·)$, $\chi_{2440}(1139,·)$, $\chi_{2440}(1961,·)$, $\chi_{2440}(1681,·)$, $\chi_{2440}(121,·)$, $\chi_{2440}(1979,·)$, $\chi_{2440}(1339,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} + \frac{4}{13} a^{9} + \frac{3}{13} a^{7} - \frac{1}{13} a^{5} - \frac{4}{13} a^{3} - \frac{3}{13} a$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{10} + \frac{3}{13} a^{8} - \frac{1}{13} a^{6} - \frac{4}{13} a^{4} - \frac{3}{13} a^{2}$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{611} a^{16} + \frac{2}{611} a^{15} - \frac{6}{611} a^{14} + \frac{2}{611} a^{13} + \frac{20}{611} a^{12} - \frac{1}{47} a^{11} - \frac{258}{611} a^{10} + \frac{8}{47} a^{9} + \frac{99}{611} a^{8} - \frac{8}{47} a^{7} - \frac{111}{611} a^{6} - \frac{15}{47} a^{5} + \frac{140}{611} a^{4} + \frac{297}{611} a^{3} - \frac{93}{611} a^{2} + \frac{232}{611} a + \frac{2}{47}$, $\frac{1}{7943} a^{17} + \frac{2}{7943} a^{16} - \frac{100}{7943} a^{15} + \frac{11}{611} a^{14} + \frac{302}{7943} a^{13} + \frac{175}{7943} a^{12} + \frac{24}{7943} a^{11} + \frac{2689}{7943} a^{10} + \frac{3671}{7943} a^{9} + \frac{3515}{7943} a^{8} + \frac{2568}{7943} a^{7} - \frac{1605}{7943} a^{6} - \frac{3808}{7943} a^{5} + \frac{12}{611} a^{4} + \frac{1928}{7943} a^{3} - \frac{1695}{7943} a^{2} - \frac{1713}{7943} a$, $\frac{1}{87373} a^{18} - \frac{4}{87373} a^{17} + \frac{4}{7943} a^{16} - \frac{1389}{87373} a^{15} + \frac{952}{87373} a^{14} + \frac{1730}{87373} a^{13} + \frac{2094}{87373} a^{12} - \frac{54}{1859} a^{11} + \frac{42605}{87373} a^{10} + \frac{33151}{87373} a^{9} + \frac{20751}{87373} a^{8} + \frac{37028}{87373} a^{7} - \frac{3551}{87373} a^{6} - \frac{4361}{87373} a^{5} - \frac{40712}{87373} a^{4} - \frac{7868}{87373} a^{3} + \frac{1394}{7943} a^{2} - \frac{42736}{87373} a + \frac{15}{47}$, $\frac{1}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{19} - \frac{8932915064037540001700716197198226050482609881816347154236749070}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{18} + \frac{7533665469822130664600976085895962709529132105286178381726129061}{196099087613027609293896445263185846227888626626736302424813170531483} a^{17} + \frac{1717166689262715629415729361871240008268175997194317283908613868922}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{16} + \frac{53381561895169066701637596896164568920351840720739739698946630989474}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{15} - \frac{64558608209658752550913057630836866188263441607842049664471985092042}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{14} + \frac{48707725350820741148276168936229455532798290612926986103252677644159}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{13} + \frac{49720226680373615811878068128432147972728188870784173898655630285715}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{12} - \frac{44323427139234386125188561561903639678862692261938200855524673102077}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{11} - \frac{483099280011812538194756988367495066605376818507065254703036006937173}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{10} + \frac{668974072885862085943003350161499581478896934743863444957195059919031}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{9} - \frac{562182256416199125883406757129634773265131225877371049271202413649135}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{8} - \frac{1070642010248435453560354934241561780500038265701330238388089128604360}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{7} - \frac{223235650507817035631461755646123003059120220967447921969747033110853}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{6} + \frac{457617240501121866774834970214082611693688386665310899708335662593099}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{5} - \frac{60812047362442614874037136308327163655802701066022346618264132232237}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{4} - \frac{66802129918170626452820232477720453506890170009398456052962387712558}{196099087613027609293896445263185846227888626626736302424813170531483} a^{3} + \frac{771897402320283440407340032235059559920486282408095048370131496094852}{2157089963743303702232860897895044308506774892894099326672944875846313} a^{2} + \frac{94667556257678545713852089148455600939874616060909756330957765627503}{196099087613027609293896445263185846227888626626736302424813170531483} a + \frac{167566469329600444002975277527323508320663954847813306402520062}{3061608524660467585110247228976688049021695627339718387297827833}$
Class group and class number
$C_{2}\times C_{311137266}$, which has order $622274532$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36549838.47150319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||