Normalized defining polynomial
\( x^{20} + 55 x^{18} + 1163 x^{16} + 12828 x^{14} + 82081 x^{12} + 314412 x^{10} + 706127 x^{8} + 850547 x^{6} + 425738 x^{4} + 16988 x^{2} + 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143395969135330465829722243945339027456=2^{20}\cdot 61^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(244=2^{2}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{244}(1,·)$, $\chi_{244}(3,·)$, $\chi_{244}(9,·)$, $\chi_{244}(203,·)$, $\chi_{244}(81,·)$, $\chi_{244}(131,·)$, $\chi_{244}(149,·)$, $\chi_{244}(217,·)$, $\chi_{244}(27,·)$, $\chi_{244}(95,·)$, $\chi_{244}(163,·)$, $\chi_{244}(241,·)$, $\chi_{244}(41,·)$, $\chi_{244}(235,·)$, $\chi_{244}(113,·)$, $\chi_{244}(243,·)$, $\chi_{244}(119,·)$, $\chi_{244}(121,·)$, $\chi_{244}(123,·)$, $\chi_{244}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{13} a^{9} - \frac{1}{13} a^{7} + \frac{1}{13} a^{3} - \frac{1}{13} a$, $\frac{1}{13} a^{10} - \frac{1}{13} a^{8} + \frac{1}{13} a^{4} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{11} - \frac{1}{13} a^{7} + \frac{1}{13} a^{5} - \frac{1}{13} a$, $\frac{1}{13} a^{12} - \frac{1}{13} a^{8} + \frac{1}{13} a^{6} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{7943} a^{16} + \frac{164}{7943} a^{14} + \frac{81}{7943} a^{12} - \frac{72}{7943} a^{10} - \frac{1075}{7943} a^{8} - \frac{725}{7943} a^{6} - \frac{2894}{7943} a^{4} - \frac{3085}{7943} a^{2} - \frac{11}{47}$, $\frac{1}{7943} a^{17} + \frac{164}{7943} a^{15} + \frac{81}{7943} a^{13} - \frac{72}{7943} a^{11} + \frac{147}{7943} a^{9} - \frac{1947}{7943} a^{7} - \frac{2894}{7943} a^{5} - \frac{1863}{7943} a^{3} - \frac{237}{611} a$, $\frac{1}{3438913907} a^{18} - \frac{160700}{3438913907} a^{16} + \frac{209725}{264531839} a^{14} + \frac{2827530}{264531839} a^{12} + \frac{1147086}{3438913907} a^{10} - \frac{1463389803}{3438913907} a^{8} - \frac{13727161}{312628537} a^{6} - \frac{241990282}{3438913907} a^{4} + \frac{12001115}{312628537} a^{2} - \frac{3068911}{20348603}$, $\frac{1}{3438913907} a^{19} - \frac{160700}{3438913907} a^{17} + \frac{209725}{264531839} a^{15} + \frac{2827530}{264531839} a^{13} + \frac{1147086}{3438913907} a^{11} + \frac{123801231}{3438913907} a^{9} + \frac{154611282}{312628537} a^{7} - \frac{241990282}{3438913907} a^{5} + \frac{156291209}{312628537} a^{3} + \frac{102544378}{264531839} a$
Class group and class number
$C_{10065}$, which has order $10065$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{334}{312628537} a^{19} + \frac{444825}{312628537} a^{17} + \frac{22450756}{312628537} a^{15} + \frac{428108310}{312628537} a^{13} + \frac{4109912357}{312628537} a^{11} + \frac{21721592726}{312628537} a^{9} + \frac{63398148746}{312628537} a^{7} + \frac{94375064564}{312628537} a^{5} + \frac{55719178059}{312628537} a^{3} + \frac{255611388}{24048349} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36549838.4715 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-61}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{61}) \), \(\Q(i, \sqrt{61})\), 5.5.13845841.1, 10.0.11974805599062160384.1, 10.0.196308288509215744.1, 10.10.11694146092834141.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $61$ | 61.10.9.1 | $x^{10} - 61$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 61.10.9.1 | $x^{10} - 61$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |