Normalized defining polynomial
\( x^{20} - 10 x^{19} + 25 x^{18} + 60 x^{17} - 285 x^{16} - 372 x^{15} + 2510 x^{14} + 160 x^{13} - 10325 x^{12} + 70 x^{11} + 36707 x^{10} - 17430 x^{9} - 56505 x^{8} + 29100 x^{7} + 90110 x^{6} - 125026 x^{5} + 80395 x^{4} - 45850 x^{3} + 23555 x^{2} - 6890 x + 853 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14315153843200000000000000000000=2^{28}\cdot 5^{20}\cdot 7^{8}\cdot 97\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{12} + \frac{7}{15} a^{11} + \frac{1}{5} a^{10} - \frac{1}{3} a^{9} - \frac{2}{5} a^{8} + \frac{4}{15} a^{7} - \frac{2}{15} a^{6} - \frac{1}{5} a^{5} + \frac{7}{15} a^{3} + \frac{7}{15} a^{2} - \frac{1}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{12} - \frac{4}{15} a^{11} + \frac{2}{15} a^{10} + \frac{4}{15} a^{9} + \frac{4}{15} a^{7} - \frac{1}{15} a^{6} - \frac{2}{15} a^{5} - \frac{1}{5} a^{4} - \frac{1}{3} a^{3} + \frac{7}{15} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{75} a^{15} - \frac{2}{15} a^{12} + \frac{2}{15} a^{11} - \frac{19}{75} a^{10} - \frac{1}{15} a^{9} - \frac{1}{5} a^{8} - \frac{1}{3} a^{7} - \frac{2}{5} a^{6} + \frac{1}{3} a^{5} + \frac{2}{5} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{4}{15} a + \frac{8}{25}$, $\frac{1}{675} a^{16} + \frac{1}{675} a^{15} - \frac{2}{135} a^{14} - \frac{1}{45} a^{13} - \frac{1}{45} a^{12} - \frac{304}{675} a^{11} + \frac{241}{675} a^{10} - \frac{22}{135} a^{9} - \frac{32}{135} a^{8} + \frac{7}{135} a^{7} - \frac{14}{45} a^{6} + \frac{11}{45} a^{5} + \frac{2}{135} a^{4} + \frac{2}{15} a^{3} + \frac{8}{135} a^{2} - \frac{146}{675} a + \frac{154}{675}$, $\frac{1}{675} a^{17} - \frac{2}{675} a^{15} - \frac{1}{135} a^{14} + \frac{71}{675} a^{12} - \frac{8}{135} a^{11} - \frac{8}{75} a^{10} + \frac{26}{135} a^{9} + \frac{19}{45} a^{8} - \frac{4}{135} a^{7} + \frac{7}{45} a^{6} - \frac{31}{135} a^{5} - \frac{4}{27} a^{4} - \frac{2}{27} a^{3} + \frac{88}{225} a^{2} + \frac{17}{45} a - \frac{163}{675}$, $\frac{1}{5567372664332625} a^{18} - \frac{1}{618596962703625} a^{17} + \frac{2190109564522}{5567372664332625} a^{16} - \frac{17520876515972}{5567372664332625} a^{15} + \frac{1703429677973}{74231635524435} a^{14} + \frac{154631113337321}{5567372664332625} a^{13} + \frac{346521619241681}{5567372664332625} a^{12} - \frac{762808942318036}{1855790888110875} a^{11} - \frac{2731123916653097}{5567372664332625} a^{10} + \frac{11599423978543}{24743878508145} a^{9} - \frac{107521126798}{422570980215} a^{8} + \frac{144042263754248}{371158177622175} a^{7} + \frac{17707510598513}{1113474532866525} a^{6} - \frac{328319078884103}{1113474532866525} a^{5} + \frac{17870837067287}{35918533318275} a^{4} - \frac{272276263051877}{1855790888110875} a^{3} + \frac{905050118992433}{1855790888110875} a^{2} + \frac{2019554528230163}{5567372664332625} a + \frac{680014019794879}{1855790888110875}$, $\frac{1}{228262279237637625} a^{19} + \frac{11}{228262279237637625} a^{18} + \frac{125909502105067}{228262279237637625} a^{17} + \frac{158248666817908}{228262279237637625} a^{16} - \frac{17593340132336}{15217485282509175} a^{15} - \frac{6280500227662529}{228262279237637625} a^{14} - \frac{1740404530620883}{76087426412545875} a^{13} - \frac{12307551220199813}{228262279237637625} a^{12} - \frac{9901401449678213}{25362475470848625} a^{11} - \frac{53003848665511}{298382064362925} a^{10} + \frac{1321908165081704}{9130491169505505} a^{9} + \frac{19493145998147714}{45652455847527525} a^{8} + \frac{7533098298480581}{15217485282509175} a^{7} - \frac{11529560130217558}{45652455847527525} a^{6} - \frac{5715459086498423}{45652455847527525} a^{5} + \frac{347553631279847}{8454158490282875} a^{4} - \frac{7933153526961544}{25362475470848625} a^{3} - \frac{19798770051771769}{76087426412545875} a^{2} - \frac{3462474001697354}{13427192896331625} a - \frac{8451222200929462}{45652455847527525}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1479763590}{1649591900543} a^{18} - \frac{13317872310}{1649591900543} a^{17} + \frac{23298572975}{1649591900543} a^{16} + \frac{115483188560}{1649591900543} a^{15} - \frac{312198852565}{1649591900543} a^{14} - \frac{892115035105}{1649591900543} a^{13} + \frac{2901640192185}{1649591900543} a^{12} + \frac{3366472423415}{1649591900543} a^{11} - \frac{12655076968819}{1649591900543} a^{10} - \frac{13399683205815}{1649591900543} a^{9} + \frac{83770675855}{3130155409} a^{8} + \frac{21682791773925}{1649591900543} a^{7} - \frac{73208211769845}{1649591900543} a^{6} - \frac{34978501894671}{1649591900543} a^{5} + \frac{3764170652480}{53212641953} a^{4} - \frac{61275037143615}{1649591900543} a^{3} + \frac{27960496195280}{1649591900543} a^{2} - \frac{20153955769650}{1649591900543} a + \frac{4557820464163}{1649591900543} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20344482.1317 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.2450000.1, 10.0.384160000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||