Normalized defining polynomial
\( x^{20} - 4 x^{19} + 34 x^{18} - 168 x^{17} + 939 x^{16} - 3852 x^{15} + 16802 x^{14} - 61676 x^{13} + 215150 x^{12} - 689048 x^{11} + 2100216 x^{10} - 5913476 x^{9} + 15156257 x^{8} - 34282576 x^{7} + 70051658 x^{6} - 119636172 x^{5} + 180714223 x^{4} - 203873920 x^{3} + 201449168 x^{2} - 105586732 x + 53218751 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142272327122261506049033808572607102976=2^{30}\cdot 19^{10}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{190} a^{16} - \frac{3}{38} a^{15} + \frac{1}{5} a^{14} + \frac{39}{190} a^{13} + \frac{3}{38} a^{12} + \frac{12}{95} a^{11} + \frac{1}{95} a^{10} - \frac{1}{2} a^{9} - \frac{47}{190} a^{8} + \frac{1}{190} a^{7} + \frac{9}{95} a^{6} + \frac{13}{38} a^{5} - \frac{26}{95} a^{4} + \frac{2}{95} a^{3} - \frac{3}{38} a^{2} + \frac{42}{95} a - \frac{67}{190}$, $\frac{1}{190} a^{17} + \frac{3}{190} a^{15} + \frac{39}{190} a^{14} + \frac{3}{19} a^{13} - \frac{18}{95} a^{12} - \frac{9}{95} a^{11} + \frac{3}{19} a^{10} + \frac{24}{95} a^{9} + \frac{28}{95} a^{8} + \frac{33}{190} a^{7} + \frac{5}{19} a^{6} - \frac{27}{190} a^{5} + \frac{79}{190} a^{4} + \frac{9}{38} a^{3} - \frac{23}{95} a^{2} + \frac{53}{190} a - \frac{11}{38}$, $\frac{1}{59090} a^{18} - \frac{23}{29545} a^{17} - \frac{17}{11818} a^{16} + \frac{14711}{59090} a^{15} - \frac{11853}{59090} a^{14} + \frac{11017}{59090} a^{13} + \frac{1869}{29545} a^{12} + \frac{52}{1555} a^{11} - \frac{2274}{29545} a^{10} - \frac{16117}{59090} a^{9} - \frac{13037}{59090} a^{8} + \frac{9179}{59090} a^{7} + \frac{10719}{59090} a^{6} - \frac{28339}{59090} a^{5} + \frac{1301}{29545} a^{4} + \frac{11971}{29545} a^{3} + \frac{22869}{59090} a^{2} - \frac{485}{5909} a - \frac{19979}{59090}$, $\frac{1}{165096392226449511121026418831624987514914318935813060960097115830} a^{19} + \frac{455462026008782546568382075523581808416565508417503073557834}{82548196113224755560513209415812493757457159467906530480048557915} a^{18} + \frac{204795505092062211600902874595367531781362433884292476693862}{334203223130464597410984653505313739908733439141321985749184445} a^{17} + \frac{207653243477173083748808626441207156424111755305234766139294332}{82548196113224755560513209415812493757457159467906530480048557915} a^{16} + \frac{15608981371648129151743856517658590666151191793387181968718906}{82548196113224755560513209415812493757457159467906530480048557915} a^{15} + \frac{36243992507737585003399802114739487227191274729540151909708874817}{165096392226449511121026418831624987514914318935813060960097115830} a^{14} - \frac{11486127830729619640732880704956919679226947055779844855791913641}{82548196113224755560513209415812493757457159467906530480048557915} a^{13} - \frac{1528796194428588501259695551847501620586924209222198734125110569}{165096392226449511121026418831624987514914318935813060960097115830} a^{12} + \frac{31858498607269065552859041549840447869663292125012837083224521727}{165096392226449511121026418831624987514914318935813060960097115830} a^{11} - \frac{15955012476144880002904505452081973412370007169993913800518056739}{82548196113224755560513209415812493757457159467906530480048557915} a^{10} - \frac{2698247624942327106253766274812651587915575195869294176379885909}{6349861239478827350808708416600961058265935343685117729234504455} a^{9} - \frac{72083581953454479502490520398011569284277383541352452440495278073}{165096392226449511121026418831624987514914318935813060960097115830} a^{8} + \frac{1077763248190676296257058832453540489267690514532646875746681002}{82548196113224755560513209415812493757457159467906530480048557915} a^{7} - \frac{1810298813472709097847696739864810150400225128179244331218670061}{8689283801392079532685600991138157237627069417674371629478795570} a^{6} - \frac{1398896243049997504708459041666341832822994424517853784191859308}{6349861239478827350808708416600961058265935343685117729234504455} a^{5} - \frac{63431728429594619648058663895874406988169240110053244562797906633}{165096392226449511121026418831624987514914318935813060960097115830} a^{4} + \frac{60447618652106693018329932484160993885264909724952738995116177639}{165096392226449511121026418831624987514914318935813060960097115830} a^{3} + \frac{16690441092570297926034092435360650792600781814913611455142644762}{82548196113224755560513209415812493757457159467906530480048557915} a^{2} - \frac{58010953955974135523589331530554454281529304753949122568802949101}{165096392226449511121026418831624987514914318935813060960097115830} a + \frac{39409575325316261907975497830068550069420075377495725178517512559}{82548196113224755560513209415812493757457159467906530480048557915}$
Class group and class number
$C_{5}\times C_{5}\times C_{5}\times C_{150}$, which has order $18750$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4747366.99665 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{817}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{-86}) \), \(\Q(\sqrt{-38}, \sqrt{-86})\), 5.5.667489.1 x5, 10.10.364007458703857.1, 10.0.277390614111813632.1 x5, 10.0.627778758253051904.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |