Properties

Label 20.0.14227232712...2976.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 19^{10}\cdot 43^{10}$
Root discriminant $80.85$
Ramified primes $2, 19, 43$
Class number $30752$ (GRH)
Class group $[62, 496]$ (GRH)
Galois group $D_{10}$ (as 20T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![37311425, -92496540, 107321392, -84942664, 55154491, -28153856, 10758886, -3064120, 361817, 280784, 3274, -68008, 37584, -24012, 8264, -2396, 709, -132, 34, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 34*x^18 - 132*x^17 + 709*x^16 - 2396*x^15 + 8264*x^14 - 24012*x^13 + 37584*x^12 - 68008*x^11 + 3274*x^10 + 280784*x^9 + 361817*x^8 - 3064120*x^7 + 10758886*x^6 - 28153856*x^5 + 55154491*x^4 - 84942664*x^3 + 107321392*x^2 - 92496540*x + 37311425)
 
gp: K = bnfinit(x^20 - 4*x^19 + 34*x^18 - 132*x^17 + 709*x^16 - 2396*x^15 + 8264*x^14 - 24012*x^13 + 37584*x^12 - 68008*x^11 + 3274*x^10 + 280784*x^9 + 361817*x^8 - 3064120*x^7 + 10758886*x^6 - 28153856*x^5 + 55154491*x^4 - 84942664*x^3 + 107321392*x^2 - 92496540*x + 37311425, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 34 x^{18} - 132 x^{17} + 709 x^{16} - 2396 x^{15} + 8264 x^{14} - 24012 x^{13} + 37584 x^{12} - 68008 x^{11} + 3274 x^{10} + 280784 x^{9} + 361817 x^{8} - 3064120 x^{7} + 10758886 x^{6} - 28153856 x^{5} + 55154491 x^{4} - 84942664 x^{3} + 107321392 x^{2} - 92496540 x + 37311425 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(142272327122261506049033808572607102976=2^{30}\cdot 19^{10}\cdot 43^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $80.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{30} a^{15} - \frac{1}{15} a^{14} + \frac{1}{30} a^{13} + \frac{7}{30} a^{12} + \frac{1}{15} a^{11} - \frac{1}{10} a^{10} - \frac{11}{30} a^{9} - \frac{2}{5} a^{8} + \frac{3}{10} a^{7} + \frac{1}{30} a^{6} - \frac{3}{10} a^{5} + \frac{11}{30} a^{4} - \frac{1}{15} a^{3} - \frac{1}{10} a^{2} - \frac{2}{5} a - \frac{1}{3}$, $\frac{1}{570} a^{16} + \frac{7}{570} a^{15} - \frac{47}{570} a^{14} - \frac{119}{570} a^{13} - \frac{5}{114} a^{12} - \frac{2}{19} a^{11} - \frac{34}{285} a^{10} - \frac{27}{190} a^{9} + \frac{27}{190} a^{8} - \frac{173}{570} a^{7} - \frac{6}{19} a^{6} - \frac{47}{114} a^{5} + \frac{13}{30} a^{4} + \frac{14}{95} a^{3} - \frac{83}{190} a^{2} - \frac{89}{285} a - \frac{8}{19}$, $\frac{1}{331170} a^{17} - \frac{1}{15770} a^{16} - \frac{1107}{110390} a^{15} - \frac{488}{2905} a^{14} - \frac{31663}{165585} a^{13} - \frac{24133}{165585} a^{12} + \frac{26521}{331170} a^{11} + \frac{31606}{165585} a^{10} + \frac{44559}{110390} a^{9} - \frac{13679}{33117} a^{8} - \frac{60943}{331170} a^{7} - \frac{12619}{47310} a^{6} + \frac{4441}{23655} a^{5} + \frac{15653}{33117} a^{4} - \frac{3558}{11039} a^{3} + \frac{24293}{331170} a^{2} + \frac{15340}{33117} a + \frac{642}{11039}$, $\frac{1}{4305210} a^{18} - \frac{1}{2152605} a^{17} + \frac{542}{717535} a^{16} - \frac{1227}{143507} a^{15} + \frac{853}{25935} a^{14} - \frac{16184}{307515} a^{13} - \frac{727}{615030} a^{12} - \frac{20430}{143507} a^{11} + \frac{215044}{2152605} a^{10} + \frac{74687}{2152605} a^{9} + \frac{32822}{143507} a^{8} - \frac{17476}{113295} a^{7} + \frac{280567}{615030} a^{6} - \frac{50941}{2152605} a^{5} + \frac{1973171}{4305210} a^{4} - \frac{824969}{2152605} a^{3} - \frac{148207}{717535} a^{2} - \frac{201626}{430521} a - \frac{54039}{287014}$, $\frac{1}{313413624091831606182113633713917173359287104584857834523710} a^{19} + \frac{1885770196773180542361678711150574929265221473938383}{20894241606122107078807575580927811557285806972323855634914} a^{18} - \frac{102553511460951968675634605605785230769476337948751211}{104471208030610535394037877904639057786429034861619278174570} a^{17} - \frac{20165197482232396663594790853014033671335305664839256019}{44773374870261658026016233387702453337041014940693976360530} a^{16} - \frac{3614546176655089027069329564968908064248211318762087464}{574017626541816128538669658816698119705654037701204825135} a^{15} + \frac{1214155074752706236130906433630791303915904213646025378482}{52235604015305267697018938952319528893214517430809639087285} a^{14} + \frac{1205368628296390526832246686687143403143955449311371793199}{10447120803061053539403787790463905778642903486161927817457} a^{13} - \frac{35164336208794971516745630145417629458797624857057727488}{211480178199616468408983558511415096733662013889917567155} a^{12} - \frac{22641708022213520616874245081217500079044766938000448456519}{104471208030610535394037877904639057786429034861619278174570} a^{11} + \frac{136968571358402164798723138325553639137597754123825796552}{2749242316595014089316786260648396257537606180568928373015} a^{10} - \frac{1183995704443312769827427690468530252765647528484242162248}{8247726949785042267950358781945188772612818541706785119045} a^{9} - \frac{28350269252573935641924484682809965535343149940977231059727}{313413624091831606182113633713917173359287104584857834523710} a^{8} + \frac{29663446962656897820358503415471178398258083133550311113697}{313413624091831606182113633713917173359287104584857834523710} a^{7} - \frac{119268594544530344741455144250974656957435322456320645786913}{313413624091831606182113633713917173359287104584857834523710} a^{6} - \frac{201361681884512642347217612707142491152607473309516925336}{22386687435130829013008116693851226668520507470346988180265} a^{5} - \frac{142408944539521618633878010512566616993529930493530379544149}{313413624091831606182113633713917173359287104584857834523710} a^{4} - \frac{3247669404159538303335481979855403541858534320890665064992}{8247726949785042267950358781945188772612818541706785119045} a^{3} + \frac{3883309321065235898763363246289141205553586537516383563031}{14924458290087219342005411129234151112347004980231325453510} a^{2} - \frac{94913536282442910876478162358880440880083316536130699601847}{313413624091831606182113633713917173359287104584857834523710} a - \frac{4428327922341205621887932614734712400067995615951830560386}{10447120803061053539403787790463905778642903486161927817457}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{62}\times C_{496}$, which has order $30752$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4747366.99665 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{10}$ (as 20T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 20
The 8 conjugacy class representatives for $D_{10}$
Character table for $D_{10}$

Intermediate fields

\(\Q(\sqrt{817}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1634}) \), \(\Q(\sqrt{-2}, \sqrt{817})\), 5.5.667489.1 x5, 10.10.364007458703857.1, 10.0.14599506005884928.1 x5, 10.0.11927796406807986176.1 x5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.15.9$x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.9$x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$$2$$5$$15$$C_{10}$$[3]^{5}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
$43$43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$