Normalized defining polynomial
\( x^{20} - 6 x^{19} + 21 x^{18} - 39 x^{17} + 157 x^{16} - 441 x^{15} + 690 x^{14} - 1298 x^{13} + 3509 x^{12} - 6743 x^{11} + 9694 x^{10} - 10821 x^{9} + 13021 x^{8} - 13611 x^{7} + 11130 x^{6} - 728 x^{5} + 6223 x^{4} + 175 x^{3} + 8131 x^{2} + 1565 x + 2501 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1415402716656928000000000000000=2^{20}\cdot 5^{15}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{10} a^{16} - \frac{1}{2} a^{15} - \frac{3}{10} a^{13} + \frac{3}{10} a^{12} - \frac{1}{2} a^{11} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{2}{5} a^{5} + \frac{3}{10} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{17} - \frac{1}{2} a^{15} - \frac{3}{10} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{3}{10} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{3}{10} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{18} + \frac{1}{5} a^{15} - \frac{1}{5} a^{14} - \frac{1}{2} a^{13} - \frac{1}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{2470652153372640619059664933729533553765887590} a^{19} - \frac{13310567519661447121677852686076765756572235}{494130430674528123811932986745906710753177518} a^{18} + \frac{53109691076162283241370720686799907949558563}{1235326076686320309529832466864766776882943795} a^{17} + \frac{22685107385393069157680180755854237518711953}{2470652153372640619059664933729533553765887590} a^{16} + \frac{787295109076457586669800630630001457815547823}{2470652153372640619059664933729533553765887590} a^{15} + \frac{370230359369650742112641730464477353442206377}{2470652153372640619059664933729533553765887590} a^{14} - \frac{50690612670511811421708985938249845867820091}{2470652153372640619059664933729533553765887590} a^{13} + \frac{95377026467234185101090579025542519400026005}{247065215337264061905966493372953355376588759} a^{12} + \frac{520617525473524935980923023690284601337915029}{1235326076686320309529832466864766776882943795} a^{11} - \frac{146574561413176009071134553251720356439962918}{1235326076686320309529832466864766776882943795} a^{10} - \frac{573274761125923422107726483891132372919705993}{2470652153372640619059664933729533553765887590} a^{9} - \frac{433234000911126238994492932359363693319694517}{1235326076686320309529832466864766776882943795} a^{8} + \frac{142391518178758604757246845960119093347345037}{2470652153372640619059664933729533553765887590} a^{7} - \frac{383002589535225380347582301224717654404946122}{1235326076686320309529832466864766776882943795} a^{6} - \frac{285306334372611222065369914862822479419671407}{2470652153372640619059664933729533553765887590} a^{5} + \frac{8961488036367506289619335950966583870050437}{494130430674528123811932986745906710753177518} a^{4} + \frac{1103512640818550141173069170749334908799770933}{2470652153372640619059664933729533553765887590} a^{3} - \frac{103803495895662621843687253364997089532752024}{1235326076686320309529832466864766776882943795} a^{2} + \frac{16328566099259808908843202267213079859902796}{1235326076686320309529832466864766776882943795} a + \frac{294292292450660323905674800267781436635185983}{1235326076686320309529832466864766776882943795}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2452904.06156 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.11125.1, 10.2.25347200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 89 | Data not computed | ||||||