Normalized defining polynomial
\( x^{20} - 12 x^{18} + 89 x^{16} - 210 x^{14} + x^{12} + 2848 x^{10} - 109 x^{8} + 8040 x^{6} + 58444 x^{4} + 152030 x^{2} + 279841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14138200398183609412083027778994176=2^{40}\cdot 11^{16}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{8} - \frac{1}{11} a^{6} - \frac{1}{11} a^{4} + \frac{5}{11} a^{2} + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{5}{11} a^{9} - \frac{1}{11} a^{7} - \frac{1}{11} a^{5} + \frac{5}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{4}{11} a^{8} + \frac{4}{11} a^{6} - \frac{1}{11} a^{4} - \frac{2}{11} a^{2} - \frac{5}{11}$, $\frac{1}{11} a^{13} - \frac{4}{11} a^{9} + \frac{4}{11} a^{7} - \frac{1}{11} a^{5} - \frac{2}{11} a^{3} - \frac{5}{11} a$, $\frac{1}{11} a^{14} + \frac{2}{11} a^{8} - \frac{5}{11} a^{6} + \frac{5}{11} a^{4} + \frac{4}{11} a^{2} + \frac{4}{11}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{9} - \frac{5}{11} a^{7} + \frac{5}{11} a^{5} + \frac{4}{11} a^{3} + \frac{4}{11} a$, $\frac{1}{253} a^{16} - \frac{1}{23} a^{14} + \frac{9}{253} a^{12} + \frac{6}{253} a^{10} + \frac{122}{253} a^{8} + \frac{26}{253} a^{6} + \frac{101}{253} a^{4} - \frac{93}{253} a^{2} + \frac{3}{11}$, $\frac{1}{253} a^{17} - \frac{1}{23} a^{15} + \frac{9}{253} a^{13} + \frac{6}{253} a^{11} + \frac{122}{253} a^{9} + \frac{26}{253} a^{7} + \frac{101}{253} a^{5} - \frac{93}{253} a^{3} + \frac{3}{11} a$, $\frac{1}{29956633888419888089} a^{18} + \frac{7961407116289743}{29956633888419888089} a^{16} - \frac{476240380641105418}{29956633888419888089} a^{14} + \frac{65831364467632032}{2723330353492717099} a^{12} + \frac{606078885135554482}{29956633888419888089} a^{10} + \frac{8254732628687561656}{29956633888419888089} a^{8} + \frac{308348033155128014}{1302462342974777743} a^{6} - \frac{14692681661743371974}{29956633888419888089} a^{4} + \frac{14663919454168574896}{29956633888419888089} a^{2} + \frac{66490181144049230}{1302462342974777743}$, $\frac{1}{689002579433657426047} a^{19} + \frac{836801079918421034}{689002579433657426047} a^{17} - \frac{129407792816945302}{62636598130332493277} a^{15} - \frac{2709619349607734425}{689002579433657426047} a^{13} + \frac{21919099042904644822}{689002579433657426047} a^{11} - \frac{198363157234129453029}{689002579433657426047} a^{9} + \frac{287358219837231482293}{689002579433657426047} a^{7} - \frac{4123613595947475431}{62636598130332493277} a^{5} + \frac{193574883111885772139}{689002579433657426047} a^{3} + \frac{14867198624039250855}{29956633888419888089} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140566685.702 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 28 conjugacy class representatives for t20n254 |
| Character table for t20n254 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |