Normalized defining polynomial
\( x^{20} - 2 x^{19} + 13 x^{18} - 22 x^{17} + 99 x^{16} - 152 x^{15} + 492 x^{14} - 688 x^{13} + 1763 x^{12} - 2238 x^{11} + 4497 x^{10} - 5026 x^{9} + 8525 x^{8} - 7336 x^{7} + 10214 x^{6} - 7176 x^{5} + 6476 x^{4} - 2960 x^{3} + 2160 x^{2} - 960 x + 320 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1410554953728000000000000000=2^{30}\cdot 3^{16}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{16} a^{9} + \frac{3}{16} a^{8} + \frac{5}{16} a^{7} - \frac{1}{16} a^{6} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{80} a^{16} + \frac{1}{40} a^{15} - \frac{9}{80} a^{12} - \frac{19}{80} a^{10} - \frac{7}{40} a^{8} - \frac{3}{8} a^{7} - \frac{1}{16} a^{6} + \frac{7}{20} a^{5} - \frac{7}{40} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1760} a^{17} + \frac{1}{176} a^{16} + \frac{13}{880} a^{15} + \frac{1}{176} a^{14} + \frac{101}{1760} a^{13} - \frac{31}{880} a^{12} - \frac{79}{1760} a^{11} - \frac{3}{40} a^{10} + \frac{1}{10} a^{9} - \frac{3}{440} a^{8} - \frac{159}{352} a^{7} - \frac{261}{880} a^{6} - \frac{65}{176} a^{5} - \frac{93}{440} a^{4} - \frac{35}{88} a^{3} + \frac{9}{44} a^{2} - \frac{3}{22} a + \frac{1}{11}$, $\frac{1}{8800} a^{18} - \frac{1}{1100} a^{16} + \frac{53}{2200} a^{15} - \frac{109}{8800} a^{14} - \frac{261}{4400} a^{13} - \frac{163}{8800} a^{12} - \frac{1}{4400} a^{11} + \frac{81}{400} a^{10} - \frac{391}{4400} a^{9} - \frac{389}{8800} a^{8} - \frac{1291}{4400} a^{7} + \frac{193}{880} a^{6} + \frac{949}{2200} a^{5} + \frac{1019}{2200} a^{4} + \frac{19}{220} a^{3} + \frac{4}{11} a^{2} - \frac{17}{55} a + \frac{12}{55}$, $\frac{1}{13289851948940679200} a^{19} + \frac{9496992900629}{13289851948940679200} a^{18} + \frac{62265950791741}{6644925974470339600} a^{17} - \frac{3187763800888269}{664492597447033960} a^{16} + \frac{347622666847707259}{13289851948940679200} a^{15} - \frac{130748419855852883}{13289851948940679200} a^{14} - \frac{5118693471237811}{13289851948940679200} a^{13} - \frac{755971937696475069}{13289851948940679200} a^{12} + \frac{149503710826005407}{6644925974470339600} a^{11} - \frac{270191747404635961}{3322462987235169800} a^{10} + \frac{3006232847138520773}{13289851948940679200} a^{9} + \frac{1464725927908066997}{13289851948940679200} a^{8} + \frac{3200844822635024251}{6644925974470339600} a^{7} - \frac{1103405263850650507}{6644925974470339600} a^{6} - \frac{179134060205253771}{664492597447033960} a^{5} - \frac{285250176821509219}{3322462987235169800} a^{4} + \frac{1257253881222943}{15102104487432590} a^{3} + \frac{38359799276830858}{83061574680879245} a^{2} - \frac{8920834791235606}{83061574680879245} a - \frac{13933462536204302}{83061574680879245}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 639468.319487 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.8000.2, 5.1.648000.1 x5, 10.2.2099520000000.5 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.648000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |