Normalized defining polynomial
\( x^{20} - 15 x^{18} + 146 x^{16} - 833 x^{14} + 3445 x^{12} - 9260 x^{10} + 18112 x^{8} - 21768 x^{6} + 18000 x^{4} - 5616 x^{2} + 1296 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1404428859331790362883274100506624=2^{16}\cdot 3^{10}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{14} - \frac{1}{8} a^{12} + \frac{1}{12} a^{10} - \frac{5}{24} a^{8} - \frac{11}{24} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{48} a^{15} - \frac{1}{16} a^{13} + \frac{1}{24} a^{11} + \frac{7}{48} a^{9} - \frac{11}{48} a^{7} - \frac{1}{2} a^{6} + \frac{1}{12} a^{5} - \frac{1}{6} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{144} a^{16} - \frac{1}{48} a^{14} + \frac{1}{72} a^{12} - \frac{17}{144} a^{10} + \frac{37}{144} a^{8} - \frac{1}{2} a^{7} + \frac{1}{36} a^{6} + \frac{1}{9} a^{4} + \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{864} a^{17} - \frac{1}{288} a^{15} - \frac{1}{48} a^{14} + \frac{19}{432} a^{13} + \frac{1}{16} a^{12} + \frac{163}{864} a^{11} + \frac{5}{24} a^{10} - \frac{35}{864} a^{9} - \frac{19}{48} a^{8} + \frac{25}{54} a^{7} - \frac{13}{48} a^{6} - \frac{95}{216} a^{5} - \frac{1}{3} a^{4} + \frac{5}{72} a^{3} - \frac{1}{12} a^{2} + \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{11606824590048} a^{18} + \frac{8922168841}{3868941530016} a^{16} - \frac{22194855427}{2901706147512} a^{14} - \frac{300965814401}{11606824590048} a^{12} - \frac{1}{4} a^{11} - \frac{1984906192457}{11606824590048} a^{10} - \frac{1}{4} a^{9} - \frac{2819334694585}{5803412295024} a^{8} - \frac{1}{2} a^{7} - \frac{330868665665}{2901706147512} a^{6} + \frac{1}{4} a^{5} + \frac{257772903355}{967235382504} a^{4} - \frac{1}{4} a^{3} - \frac{25329786211}{161205897084} a^{2} - \frac{7929999009}{26867649514}$, $\frac{1}{69640947540288} a^{19} + \frac{8922168841}{23213649180096} a^{17} - \frac{1}{288} a^{16} + \frac{49354783693}{8705118442536} a^{15} - \frac{1}{96} a^{14} - \frac{7555231183181}{69640947540288} a^{13} - \frac{5}{72} a^{12} - \frac{1017670809953}{69640947540288} a^{11} + \frac{41}{288} a^{10} - \frac{6930085070227}{34820473770144} a^{9} - \frac{79}{288} a^{8} + \frac{155111103863}{2176279610634} a^{7} - \frac{23}{144} a^{6} - \frac{2482727347073}{5803412295024} a^{5} + \frac{35}{72} a^{4} + \frac{81115569643}{322411794168} a^{3} - \frac{7}{24} a^{2} - \frac{61665298037}{161205897084} a + \frac{1}{4}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{912787517}{2901706147512} a^{18} + \frac{8862925813}{1934470765008} a^{16} - \frac{255515276861}{5803412295024} a^{14} + \frac{708470174329}{2901706147512} a^{12} - \frac{5742678369163}{5803412295024} a^{10} + \frac{14768390073539}{5803412295024} a^{8} - \frac{14043162145991}{2901706147512} a^{6} + \frac{2574424594387}{483617691252} a^{4} - \frac{747791240543}{161205897084} a^{2} + \frac{38752920371}{26867649514} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94759599.8631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.3104644.1, 10.10.4163967806429952.2, 10.0.2342231891116848.1, 10.0.1387989268809984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 881 | Data not computed | ||||||