Normalized defining polynomial
\( x^{20} - 21 x^{18} + 284 x^{16} - 2265 x^{14} + 13093 x^{12} - 51096 x^{10} + 146412 x^{8} - 269784 x^{6} + 351216 x^{4} - 233280 x^{2} + 104976 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1404428859331790362883274100506624=2^{16}\cdot 3^{10}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{11} + \frac{1}{6} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{12} - \frac{1}{9} a^{8} - \frac{1}{4} a^{6} + \frac{4}{9} a^{4}$, $\frac{1}{108} a^{13} + \frac{1}{36} a^{11} + \frac{7}{54} a^{9} + \frac{5}{36} a^{7} - \frac{29}{108} a^{5} - \frac{1}{18} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{216} a^{14} - \frac{1}{216} a^{13} + \frac{1}{36} a^{11} - \frac{1}{54} a^{10} + \frac{5}{27} a^{9} + \frac{1}{8} a^{8} - \frac{17}{72} a^{7} + \frac{2}{27} a^{6} - \frac{53}{108} a^{5} - \frac{1}{18} a^{3} + \frac{1}{6} a$, $\frac{1}{648} a^{15} - \frac{1}{216} a^{13} - \frac{1}{162} a^{11} + \frac{13}{216} a^{9} + \frac{151}{648} a^{7} - \frac{2}{27} a^{5} - \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{648} a^{16} - \frac{1}{216} a^{13} - \frac{1}{162} a^{12} + \frac{1}{36} a^{11} + \frac{1}{24} a^{10} + \frac{5}{27} a^{9} - \frac{23}{162} a^{8} - \frac{17}{72} a^{7} + \frac{1}{108} a^{5} - \frac{1}{6} a^{4} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{3888} a^{17} - \frac{1}{1296} a^{15} - \frac{1}{972} a^{13} - \frac{1}{72} a^{12} + \frac{13}{1296} a^{11} + \frac{799}{3888} a^{9} + \frac{1}{18} a^{8} - \frac{1}{81} a^{7} + \frac{1}{8} a^{6} + \frac{11}{36} a^{5} + \frac{5}{18} a^{4} - \frac{13}{36} a^{3} - \frac{1}{2}$, $\frac{1}{3698605676451024} a^{18} - \frac{713738165881}{1232868558817008} a^{16} + \frac{2466343759489}{1849302838225512} a^{14} - \frac{9192821837519}{1232868558817008} a^{12} - \frac{197742014872985}{3698605676451024} a^{10} + \frac{112787817877183}{616434279408504} a^{8} - \frac{6102428117191}{25684761642021} a^{6} - \frac{3907153630529}{34246348856028} a^{4} - \frac{1}{2} a^{3} + \frac{1753539750647}{5707724809338} a^{2} + \frac{4913693083}{317095822741}$, $\frac{1}{11095817029353072} a^{19} + \frac{118774651171}{1849302838225512} a^{17} - \frac{3628899695029}{11095817029353072} a^{15} - \frac{12997971710411}{3698605676451024} a^{13} - \frac{1}{72} a^{12} + \frac{110887879306679}{5547908514676536} a^{11} + \frac{369220043456039}{3698605676451024} a^{9} + \frac{1}{18} a^{8} - \frac{15615302799421}{77054284926063} a^{7} + \frac{1}{8} a^{6} - \frac{15322603249205}{102739046568084} a^{5} - \frac{2}{9} a^{4} + \frac{12068666715301}{34246348856028} a^{3} - \frac{1}{2} a^{2} - \frac{104060709886}{317095822741} a - \frac{1}{2}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35535368219}{3698605676451024} a^{18} + \frac{238152122741}{1232868558817008} a^{16} - \frac{592628158306}{231162854778189} a^{14} + \frac{24181071499045}{1232868558817008} a^{12} - \frac{407372281669979}{3698605676451024} a^{10} + \frac{125093180384027}{308217139704252} a^{8} - \frac{28730262266062}{25684761642021} a^{6} + \frac{63192864475531}{34246348856028} a^{4} - \frac{7287553300949}{2853862404669} a^{2} + \frac{532762285705}{317095822741} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43831645.0272 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.3104644.1, 10.10.4163967806429952.1, 10.0.2342231891116848.1, 10.0.1387989268809984.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.16.19 | $x^{12} + x^{10} - 2 x^{8} - 3 x^{6} + 2 x^{4} - 3 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_2\times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 881 | Data not computed | ||||||