Normalized defining polynomial
\( x^{20} - 2 x^{19} - 2 x^{18} + 18 x^{17} - 32 x^{16} + 88 x^{15} + 58 x^{14} - 782 x^{13} + 1538 x^{12} + 1348 x^{11} - 466 x^{10} - 894 x^{9} + 346 x^{8} - 114 x^{7} - 424 x^{6} - 88 x^{5} + 214 x^{4} + 54 x^{3} + 14 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1402274470934209014892578125=5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a + \frac{1}{10}$, $\frac{1}{20} a^{10} - \frac{1}{5} a^{5} + \frac{3}{20}$, $\frac{1}{100} a^{11} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} - \frac{4}{25} a^{7} + \frac{1}{10} a^{6} - \frac{3}{50} a^{5} - \frac{8}{25} a^{4} + \frac{12}{25} a^{3} + \frac{12}{25} a^{2} + \frac{1}{100} a - \frac{1}{50}$, $\frac{1}{100} a^{12} - \frac{1}{100} a^{10} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} - \frac{1}{10} a^{7} + \frac{1}{25} a^{6} - \frac{3}{25} a^{5} - \frac{8}{25} a^{4} + \frac{12}{25} a^{3} + \frac{41}{100} a^{2} + \frac{2}{25} a + \frac{1}{20}$, $\frac{1}{100} a^{13} - \frac{1}{100} a^{10} - \frac{1}{50} a^{9} + \frac{1}{25} a^{8} + \frac{2}{25} a^{7} - \frac{1}{50} a^{6} + \frac{11}{50} a^{5} - \frac{17}{50} a^{4} + \frac{19}{100} a^{3} - \frac{6}{25} a^{2} + \frac{23}{50} a - \frac{17}{100}$, $\frac{1}{500} a^{14} + \frac{1}{500} a^{13} + \frac{1}{500} a^{12} + \frac{1}{500} a^{11} + \frac{3}{250} a^{10} - \frac{3}{250} a^{9} + \frac{7}{250} a^{8} - \frac{29}{125} a^{7} - \frac{23}{250} a^{6} + \frac{27}{250} a^{5} - \frac{191}{500} a^{4} + \frac{249}{500} a^{3} + \frac{239}{500} a^{2} - \frac{71}{500} a - \frac{4}{125}$, $\frac{1}{1000} a^{15} + \frac{13}{1000} a^{10} - \frac{13}{200} a^{5} + \frac{251}{1000}$, $\frac{1}{1000} a^{16} + \frac{3}{1000} a^{11} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{4}{25} a^{7} - \frac{33}{200} a^{6} + \frac{3}{50} a^{5} + \frac{8}{25} a^{4} - \frac{12}{25} a^{3} - \frac{12}{25} a^{2} + \frac{241}{1000} a + \frac{1}{50}$, $\frac{1}{95000} a^{17} + \frac{11}{47500} a^{16} + \frac{3}{11875} a^{15} + \frac{3}{23750} a^{14} + \frac{221}{47500} a^{13} - \frac{53}{19000} a^{12} + \frac{169}{47500} a^{11} - \frac{32}{11875} a^{10} - \frac{333}{23750} a^{9} + \frac{536}{11875} a^{8} - \frac{22457}{95000} a^{7} - \frac{7301}{47500} a^{6} - \frac{1903}{23750} a^{5} + \frac{3386}{11875} a^{4} - \frac{18821}{47500} a^{3} + \frac{17129}{95000} a^{2} + \frac{3377}{9500} a + \frac{7123}{23750}$, $\frac{1}{95000} a^{18} + \frac{3}{19000} a^{16} - \frac{41}{95000} a^{15} - \frac{3}{23750} a^{14} + \frac{271}{95000} a^{13} + \frac{139}{47500} a^{12} + \frac{193}{95000} a^{11} - \frac{33}{19000} a^{10} - \frac{9}{625} a^{9} + \frac{113}{5000} a^{8} - \frac{726}{11875} a^{7} - \frac{18203}{95000} a^{6} - \frac{15683}{95000} a^{5} + \frac{6003}{23750} a^{4} - \frac{2153}{5000} a^{3} + \frac{12861}{47500} a^{2} + \frac{45267}{95000} a + \frac{31241}{95000}$, $\frac{1}{95000} a^{19} + \frac{9}{95000} a^{16} + \frac{1}{11875} a^{15} + \frac{91}{95000} a^{14} + \frac{149}{47500} a^{13} + \frac{46}{11875} a^{12} - \frac{59}{19000} a^{11} - \frac{47}{23750} a^{10} + \frac{3127}{95000} a^{9} - \frac{216}{11875} a^{8} - \frac{2037}{23750} a^{7} + \frac{17147}{95000} a^{6} + \frac{174}{11875} a^{5} - \frac{10227}{95000} a^{4} - \frac{8349}{47500} a^{3} - \frac{8267}{23750} a^{2} + \frac{9571}{95000} a + \frac{157}{950}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{33}{2375} a^{19} + \frac{77}{2375} a^{18} + \frac{22}{2375} a^{17} - \frac{4521}{19000} a^{16} + \frac{1287}{2375} a^{15} - \frac{3663}{2375} a^{14} - \frac{143}{2375} a^{13} + \frac{24332}{2375} a^{12} - \frac{95957}{3800} a^{11} - \frac{10043}{2375} a^{10} - \frac{7931}{2375} a^{9} + \frac{3179}{2375} a^{8} - \frac{3586}{2375} a^{7} + \frac{342397}{19000} a^{6} + \frac{11}{125} a^{5} + \frac{2651}{2375} a^{4} + \frac{671}{2375} a^{3} + \frac{176}{2375} a^{2} - \frac{74459}{19000} a + \frac{11}{2375} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 643711.144226 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.1830125.1 x5, 10.2.16746787578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1830125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |