Normalized defining polynomial
\( x^{20} - x^{19} + 5 x^{18} - 6 x^{17} + 20 x^{16} - 11 x^{15} + 59 x^{14} - 30 x^{13} + 179 x^{12} - 109 x^{11} + 260 x^{10} - 128 x^{9} + 334 x^{8} + 82 x^{7} + 199 x^{6} + 22 x^{5} + 146 x^{4} - 41 x^{3} + 12 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1402274470934209014892578125=5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(55=5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{55}(1,·)$, $\chi_{55}(3,·)$, $\chi_{55}(4,·)$, $\chi_{55}(9,·)$, $\chi_{55}(12,·)$, $\chi_{55}(14,·)$, $\chi_{55}(16,·)$, $\chi_{55}(23,·)$, $\chi_{55}(26,·)$, $\chi_{55}(27,·)$, $\chi_{55}(31,·)$, $\chi_{55}(34,·)$, $\chi_{55}(36,·)$, $\chi_{55}(37,·)$, $\chi_{55}(38,·)$, $\chi_{55}(42,·)$, $\chi_{55}(47,·)$, $\chi_{55}(48,·)$, $\chi_{55}(49,·)$, $\chi_{55}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{99123971} a^{17} + \frac{48325965}{99123971} a^{16} - \frac{11600658}{99123971} a^{15} + \frac{6656579}{99123971} a^{14} - \frac{7205290}{99123971} a^{13} - \frac{41244584}{99123971} a^{12} - \frac{10414845}{99123971} a^{11} + \frac{10227304}{99123971} a^{10} + \frac{37586797}{99123971} a^{9} + \frac{3892955}{99123971} a^{8} - \frac{39557243}{99123971} a^{7} + \frac{25535606}{99123971} a^{6} + \frac{34693279}{99123971} a^{5} - \frac{1364275}{99123971} a^{4} + \frac{34151070}{99123971} a^{3} + \frac{32353695}{99123971} a^{2} - \frac{7897282}{99123971} a - \frac{35616978}{99123971}$, $\frac{1}{99123971} a^{18} + \frac{14706952}{99123971} a^{16} + \frac{34456124}{99123971} a^{15} + \frac{24371681}{99123971} a^{14} - \frac{35094563}{99123971} a^{13} - \frac{839430}{99123971} a^{12} + \frac{30606824}{99123971} a^{11} + \frac{14092870}{99123971} a^{10} - \frac{11519798}{99123971} a^{9} + \frac{7266067}{99123971} a^{8} + \frac{5265686}{99123971} a^{7} + \frac{7963237}{99123971} a^{6} + \frac{27655504}{99123971} a^{5} + \frac{9716099}{99123971} a^{4} + \frac{7540135}{99123971} a^{3} - \frac{9056992}{99123971} a^{2} - \frac{5019034}{99123971} a + \frac{19540355}{99123971}$, $\frac{1}{99123971} a^{19} - \frac{18173108}{99123971} a^{16} + \frac{49216346}{99123971} a^{15} - \frac{17205099}{99123971} a^{14} - \frac{33117074}{99123971} a^{13} + \frac{45022233}{99123971} a^{12} + \frac{17275357}{99123971} a^{11} + \frac{17289672}{99123971} a^{10} + \frac{14252269}{99123971} a^{9} + \frac{12972271}{99123971} a^{8} - \frac{33700107}{99123971} a^{7} - \frac{14273679}{99123971} a^{6} + \frac{34173398}{99123971} a^{5} - \frac{42357972}{99123971} a^{4} + \frac{31042238}{99123971} a^{3} - \frac{41159200}{99123971} a^{2} + \frac{22288525}{99123971} a + \frac{30420541}{99123971}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27559952}{99123971} a^{19} + \frac{27731652}{99123971} a^{18} - \frac{138658260}{99123971} a^{17} + \frac{166389912}{99123971} a^{16} - \frac{554633040}{99123971} a^{15} + \frac{307903757}{99123971} a^{14} - \frac{1636167468}{99123971} a^{13} + \frac{831949560}{99123971} a^{12} - \frac{4963965708}{99123971} a^{11} + \frac{3022750068}{99123971} a^{10} - \frac{7261871926}{99123971} a^{9} + \frac{3549651456}{99123971} a^{8} - \frac{9262371768}{99123971} a^{7} - \frac{2273995464}{99123971} a^{6} - \frac{5518598748}{99123971} a^{5} - \frac{868193439}{99123971} a^{4} - \frac{4048821192}{99123971} a^{3} + \frac{1136997732}{99123971} a^{2} - \frac{332779824}{99123971} a + \frac{83194956}{99123971} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |