Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 76 x^{17} + 6 x^{16} - 716 x^{15} + 1124 x^{14} + 746 x^{13} - 1614 x^{12} - 3738 x^{11} + 31152 x^{10} - 64886 x^{9} + 160716 x^{8} - 233920 x^{7} + 672301 x^{6} - 960348 x^{5} + 2267144 x^{4} - 2279050 x^{3} + 3509093 x^{2} - 1817414 x + 1908103 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13936805290105078002151559671054336=2^{30}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(616=2^{3}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{616}(1,·)$, $\chi_{616}(69,·)$, $\chi_{616}(181,·)$, $\chi_{616}(449,·)$, $\chi_{616}(265,·)$, $\chi_{616}(141,·)$, $\chi_{616}(405,·)$, $\chi_{616}(477,·)$, $\chi_{616}(97,·)$, $\chi_{616}(421,·)$, $\chi_{616}(433,·)$, $\chi_{616}(489,·)$, $\chi_{616}(225,·)$, $\chi_{616}(573,·)$, $\chi_{616}(113,·)$, $\chi_{616}(309,·)$, $\chi_{616}(169,·)$, $\chi_{616}(377,·)$, $\chi_{616}(125,·)$, $\chi_{616}(533,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} + \frac{9}{23} a^{13} + \frac{7}{23} a^{12} - \frac{3}{23} a^{11} + \frac{6}{23} a^{10} - \frac{6}{23} a^{9} + \frac{1}{23} a^{8} + \frac{8}{23} a^{7} + \frac{4}{23} a^{6} + \frac{3}{23} a^{5} + \frac{10}{23} a^{4} + \frac{5}{23} a^{3} + \frac{4}{23} a^{2} + \frac{8}{23} a$, $\frac{1}{345} a^{15} + \frac{1}{115} a^{14} - \frac{14}{69} a^{13} + \frac{54}{115} a^{12} - \frac{137}{345} a^{11} + \frac{9}{115} a^{10} - \frac{32}{345} a^{9} - \frac{7}{115} a^{8} - \frac{136}{345} a^{7} + \frac{16}{115} a^{6} - \frac{77}{345} a^{5} - \frac{49}{115} a^{4} - \frac{49}{345} a^{3} - \frac{36}{115} a^{2} - \frac{94}{345} a + \frac{1}{15}$, $\frac{1}{345} a^{16} - \frac{4}{345} a^{14} + \frac{4}{115} a^{13} - \frac{98}{345} a^{12} - \frac{44}{115} a^{11} - \frac{8}{345} a^{10} - \frac{2}{23} a^{9} + \frac{2}{345} a^{8} + \frac{7}{115} a^{7} + \frac{79}{345} a^{6} - \frac{12}{115} a^{5} + \frac{107}{345} a^{4} + \frac{1}{5} a^{3} - \frac{32}{69} a^{2} - \frac{26}{69} a - \frac{1}{5}$, $\frac{1}{345} a^{17} - \frac{2}{115} a^{14} + \frac{14}{115} a^{13} - \frac{13}{115} a^{12} - \frac{121}{345} a^{11} - \frac{34}{115} a^{10} + \frac{18}{115} a^{9} - \frac{31}{115} a^{8} - \frac{1}{23} a^{7} + \frac{12}{115} a^{6} + \frac{18}{115} a^{5} - \frac{43}{115} a^{4} - \frac{7}{15} a^{3} + \frac{8}{345} a^{2} + \frac{1}{69} a + \frac{4}{15}$, $\frac{1}{246593706910665} a^{18} + \frac{244976091812}{246593706910665} a^{17} + \frac{46181252951}{49318741382133} a^{16} - \frac{244648081006}{246593706910665} a^{15} + \frac{743051667889}{49318741382133} a^{14} - \frac{17500098533353}{49318741382133} a^{13} + \frac{1158697871169}{3573821839285} a^{12} - \frac{20899655460143}{82197902303555} a^{11} + \frac{6238424024132}{49318741382133} a^{10} - \frac{9649254983885}{49318741382133} a^{9} - \frac{113417916381736}{246593706910665} a^{8} - \frac{109186239721}{2770715807985} a^{7} + \frac{79269819523321}{246593706910665} a^{6} - \frac{3146045049781}{246593706910665} a^{5} + \frac{31255055911822}{82197902303555} a^{4} - \frac{73505343097489}{246593706910665} a^{3} - \frac{258582071951}{2770715807985} a^{2} - \frac{21498026686621}{82197902303555} a + \frac{5057750412613}{10721465517855}$, $\frac{1}{218720041090197910540618611240999795705} a^{19} + \frac{347679397586777541995071}{218720041090197910540618611240999795705} a^{18} - \frac{48125193406742859648920648425344788}{218720041090197910540618611240999795705} a^{17} + \frac{20474625270216008338204531393874660}{43744008218039582108123722248199959141} a^{16} - \frac{3788348823304184948015868219709058}{72906680363399303513539537080333265235} a^{15} + \frac{3629000135747109745155780313392925922}{218720041090197910540618611240999795705} a^{14} + \frac{57786428012280534651485267341784650766}{218720041090197910540618611240999795705} a^{13} - \frac{30972815444113575729256681007791610538}{72906680363399303513539537080333265235} a^{12} - \frac{65558192598924741983056342873423845352}{218720041090197910540618611240999795705} a^{11} - \frac{84860426711675614741219835004794698181}{218720041090197910540618611240999795705} a^{10} - \frac{4845699749430745073630037283426313861}{14581336072679860702707907416066653047} a^{9} - \frac{47315423402729532536355280548879900118}{218720041090197910540618611240999795705} a^{8} - \frac{22810008503840292849565911577036379443}{72906680363399303513539537080333265235} a^{7} + \frac{1598113137331231809128820403493841001}{218720041090197910540618611240999795705} a^{6} - \frac{31844942894412304890094634325734354618}{218720041090197910540618611240999795705} a^{5} - \frac{107608811497013050405973052044071830454}{218720041090197910540618611240999795705} a^{4} + \frac{19177790385011177664456461516398529503}{43744008218039582108123722248199959141} a^{3} + \frac{50691730576916092328469324496390484153}{218720041090197910540618611240999795705} a^{2} + \frac{872952193372659227757559777791006423}{3169855667973882761458240742623185445} a + \frac{22669573365256783998271861877608027}{82691886990623028559780193285822229}$
Class group and class number
$C_{11}\times C_{110}$, which has order $1210$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1, 10.0.3602729712967.1, 10.0.118054247234502656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |