Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} + 4 x^{17} + 90 x^{16} - 100 x^{15} + 340 x^{14} - 216 x^{13} + 1704 x^{12} + 208 x^{11} + 4144 x^{10} + 848 x^{9} + 7512 x^{8} - 1024 x^{7} + 6032 x^{6} - 3104 x^{5} + 3600 x^{4} - 1344 x^{3} + 480 x^{2} + 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13936805290105078002151559671054336=2^{30}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{7791614083599745759671044816} a^{19} - \frac{99737463944323405425691521}{7791614083599745759671044816} a^{18} - \frac{86855204513627922866244967}{7791614083599745759671044816} a^{17} - \frac{177995961066533297114683313}{7791614083599745759671044816} a^{16} + \frac{8147361951811085738872671}{1947903520899936439917761204} a^{15} - \frac{137825642523301752103755983}{3895807041799872879835522408} a^{14} + \frac{120837199037024524332563479}{1947903520899936439917761204} a^{13} - \frac{20265821645264571626016395}{3895807041799872879835522408} a^{12} + \frac{223981195293517665853530275}{1947903520899936439917761204} a^{11} + \frac{736616161009700469544717}{1947903520899936439917761204} a^{10} + \frac{243240408124483629017308119}{1947903520899936439917761204} a^{9} - \frac{114038821616312436345888805}{973951760449968219958880602} a^{8} - \frac{28333275490980976250150751}{486975880224984109979440301} a^{7} + \frac{38266564595947952235364163}{973951760449968219958880602} a^{6} + \frac{31015203637653926577830502}{486975880224984109979440301} a^{5} + \frac{8160617050230749462557205}{486975880224984109979440301} a^{4} + \frac{176977979430592095399568924}{486975880224984109979440301} a^{3} + \frac{101963120894746782859185460}{486975880224984109979440301} a^{2} - \frac{59282949398974893714857022}{486975880224984109979440301} a - \frac{173507709961096364077655437}{486975880224984109979440301}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 421620502.283 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times A_4$ (as 20T14):
| A solvable group of order 60 |
| The 20 conjugacy class representatives for $C_5\times A_4$ |
| Character table for $C_5\times A_4$ |
Intermediate fields
| 4.0.3136.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||