Normalized defining polynomial
\( x^{20} - 3 x^{19} - 4 x^{18} + 18 x^{17} + 9 x^{16} - 52 x^{15} - 27 x^{14} + 86 x^{13} + 104 x^{12} - 66 x^{11} - 263 x^{10} - 132 x^{9} + 416 x^{8} + 688 x^{7} - 432 x^{6} - 1664 x^{5} + 576 x^{4} + 2304 x^{3} - 1024 x^{2} - 1536 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13932535636789734453691609=11^{18}\cdot 1583^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{3}{16} a^{10} - \frac{1}{8} a^{9} + \frac{5}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{5}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{3}{32} a^{11} + \frac{7}{16} a^{10} + \frac{5}{32} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} + \frac{7}{16} a^{6} - \frac{11}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} - \frac{3}{64} a^{12} + \frac{7}{32} a^{11} - \frac{27}{64} a^{10} + \frac{1}{4} a^{9} + \frac{7}{16} a^{8} + \frac{7}{32} a^{7} - \frac{11}{64} a^{6} + \frac{15}{32} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} - \frac{1}{64} a^{15} + \frac{1}{64} a^{14} - \frac{3}{128} a^{13} + \frac{7}{64} a^{12} - \frac{27}{128} a^{11} + \frac{1}{8} a^{10} + \frac{7}{32} a^{9} - \frac{25}{64} a^{8} - \frac{11}{128} a^{7} - \frac{17}{64} a^{6} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{11008} a^{18} + \frac{3}{11008} a^{17} - \frac{37}{5504} a^{16} - \frac{1}{5504} a^{15} + \frac{317}{11008} a^{14} + \frac{325}{5504} a^{13} - \frac{631}{11008} a^{12} - \frac{605}{2752} a^{11} + \frac{151}{1376} a^{10} - \frac{1041}{5504} a^{9} + \frac{2029}{11008} a^{8} - \frac{67}{5504} a^{7} + \frac{329}{2752} a^{6} + \frac{225}{1376} a^{5} - \frac{35}{172} a^{4} - \frac{45}{172} a^{3} - \frac{19}{172} a^{2} - \frac{37}{86} a + \frac{2}{43}$, $\frac{1}{22016} a^{19} - \frac{1}{22016} a^{18} - \frac{1}{256} a^{17} - \frac{25}{11008} a^{16} - \frac{19}{22016} a^{15} - \frac{309}{11008} a^{14} - \frac{1167}{22016} a^{13} + \frac{157}{1376} a^{12} + \frac{673}{2752} a^{11} - \frac{1565}{11008} a^{10} - \frac{6843}{22016} a^{9} + \frac{4131}{11008} a^{8} + \frac{2699}{5504} a^{7} - \frac{119}{688} a^{6} + \frac{49}{688} a^{5} + \frac{9}{344} a^{4} + \frac{4}{43} a^{3} + \frac{11}{43} a^{2} + \frac{33}{86} a - \frac{4}{43}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1925}{22016} a^{19} + \frac{6271}{22016} a^{18} + \frac{2851}{5504} a^{17} - \frac{20141}{11008} a^{16} - \frac{45045}{22016} a^{15} + \frac{29169}{5504} a^{14} + \frac{155615}{22016} a^{13} - \frac{76515}{11008} a^{12} - \frac{13503}{688} a^{11} - \frac{48023}{11008} a^{10} + \frac{768339}{22016} a^{9} + \frac{241509}{5504} a^{8} - \frac{75705}{2752} a^{7} - \frac{316855}{2752} a^{6} - \frac{40543}{1376} a^{5} + \frac{134431}{688} a^{4} + \frac{31833}{344} a^{3} - \frac{9384}{43} a^{2} - \frac{6455}{86} a + \frac{5553}{43} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 179575.849258 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{11})\), 10.10.3732631194853.1, 10.0.339330108623.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||