Normalized defining polynomial
\( x^{20} - x^{19} + 133 x^{18} - 111 x^{17} + 7426 x^{16} - 4984 x^{15} + 226458 x^{14} - 116810 x^{13} + 4114474 x^{12} - 1544654 x^{11} + 45616682 x^{10} - 11288717 x^{9} + 303154852 x^{8} - 28193649 x^{7} + 1131385739 x^{6} + 233938551 x^{5} + 2079671110 x^{4} + 1900714915 x^{3} + 1174385135 x^{2} + 2645057470 x + 5697974689 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138121364163981500584415263383168735369=3^{10}\cdot 11^{18}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(957=3\cdot 11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{957}(1,·)$, $\chi_{957}(898,·)$, $\chi_{957}(262,·)$, $\chi_{957}(28,·)$, $\chi_{957}(521,·)$, $\chi_{957}(842,·)$, $\chi_{957}(782,·)$, $\chi_{957}(784,·)$, $\chi_{957}(86,·)$, $\chi_{957}(668,·)$, $\chi_{957}(608,·)$, $\chi_{957}(610,·)$, $\chi_{957}(233,·)$, $\chi_{957}(811,·)$, $\chi_{957}(494,·)$, $\chi_{957}(434,·)$, $\chi_{957}(755,·)$, $\chi_{957}(376,·)$, $\chi_{957}(697,·)$, $\chi_{957}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{66263} a^{11} + \frac{77}{66263} a^{9} + \frac{2156}{66263} a^{7} + \frac{26411}{66263} a^{5} - \frac{471}{66263} a^{3} - \frac{13912}{66263} a + \frac{7131}{66263}$, $\frac{1}{66263} a^{12} + \frac{77}{66263} a^{10} + \frac{2156}{66263} a^{8} + \frac{26411}{66263} a^{6} - \frac{471}{66263} a^{4} - \frac{13912}{66263} a^{2} + \frac{7131}{66263} a$, $\frac{1}{66263} a^{13} - \frac{3773}{66263} a^{9} - \frac{7075}{66263} a^{7} + \frac{20035}{66263} a^{5} + \frac{22355}{66263} a^{3} + \frac{7131}{66263} a^{2} + \frac{11016}{66263} a - \frac{18983}{66263}$, $\frac{1}{66263} a^{14} - \frac{3773}{66263} a^{10} - \frac{7075}{66263} a^{8} + \frac{20035}{66263} a^{6} + \frac{22355}{66263} a^{4} + \frac{7131}{66263} a^{3} + \frac{11016}{66263} a^{2} - \frac{18983}{66263} a$, $\frac{1}{530104} a^{15} + \frac{1}{530104} a^{13} - \frac{1}{530104} a^{12} + \frac{1}{265052} a^{11} - \frac{16585}{132526} a^{10} + \frac{40519}{265052} a^{9} + \frac{65185}{265052} a^{8} - \frac{131015}{530104} a^{7} - \frac{158937}{530104} a^{6} + \frac{216889}{530104} a^{5} - \frac{191187}{530104} a^{4} + \frac{44447}{530104} a^{3} + \frac{68323}{530104} a^{2} - \frac{166145}{530104} a - \frac{4675}{12328}$, $\frac{1}{8044380526035736} a^{16} - \frac{365537392}{1005547565754467} a^{15} - \frac{39604260327}{8044380526035736} a^{14} + \frac{37277520839}{8044380526035736} a^{13} - \frac{22178594515}{4022190263017868} a^{12} + \frac{14466676825}{2011095131508934} a^{11} - \frac{1042507753247289}{4022190263017868} a^{10} + \frac{747092521400045}{4022190263017868} a^{9} + \frac{1320677273343481}{8044380526035736} a^{8} + \frac{3405049297781119}{8044380526035736} a^{7} + \frac{1593977995890561}{8044380526035736} a^{6} + \frac{3745973893320341}{8044380526035736} a^{5} + \frac{649778614826511}{8044380526035736} a^{4} + \frac{1600763366709547}{8044380526035736} a^{3} - \frac{2878210115383033}{8044380526035736} a^{2} - \frac{207009732149561}{8044380526035736} a - \frac{46414078485769}{1005547565754467}$, $\frac{1}{8044380526035736} a^{17} + \frac{2253195709}{4022190263017868} a^{15} + \frac{19873438919}{8044380526035736} a^{14} - \frac{29827938581}{8044380526035736} a^{13} - \frac{10361032501}{8044380526035736} a^{12} + \frac{3956933055}{1005547565754467} a^{11} + \frac{1383318687227847}{4022190263017868} a^{10} - \frac{2449482356864041}{8044380526035736} a^{9} + \frac{171200701956847}{349755675045032} a^{8} + \frac{823150118692273}{4022190263017868} a^{7} - \frac{234075531453665}{2011095131508934} a^{6} + \frac{292926864224924}{1005547565754467} a^{5} + \frac{427470899499441}{1005547565754467} a^{4} - \frac{1557919838963873}{4022190263017868} a^{3} + \frac{353353681764269}{4022190263017868} a^{2} + \frac{796312153045943}{8044380526035736} a + \frac{154076374299591}{8044380526035736}$, $\frac{1}{8044380526035736} a^{18} - \frac{1368638383}{4022190263017868} a^{15} + \frac{12704431265}{8044380526035736} a^{14} + \frac{3928128312}{1005547565754467} a^{13} + \frac{50094976273}{8044380526035736} a^{12} - \frac{6589562513}{2011095131508934} a^{11} + \frac{2528634314933807}{8044380526035736} a^{10} - \frac{1132676365991961}{8044380526035736} a^{9} + \frac{1839025037434295}{4022190263017868} a^{8} - \frac{3161072712934751}{8044380526035736} a^{7} + \frac{37719771206585}{187078616884552} a^{6} - \frac{173077938252215}{8044380526035736} a^{5} + \frac{3600378921822487}{8044380526035736} a^{4} - \frac{3087600826588047}{8044380526035736} a^{3} + \frac{1739830858399433}{4022190263017868} a^{2} - \frac{1662912471164089}{4022190263017868} a + \frac{3145616257054325}{8044380526035736}$, $\frac{1}{8044380526035736} a^{19} - \frac{7521201495}{8044380526035736} a^{15} + \frac{375347607}{4022190263017868} a^{14} - \frac{810225351}{120065380985608} a^{13} - \frac{3616401694}{1005547565754467} a^{12} + \frac{8504821911}{8044380526035736} a^{11} + \frac{1044823565993619}{8044380526035736} a^{10} - \frac{1396726305299663}{4022190263017868} a^{9} - \frac{1583554094533009}{8044380526035736} a^{8} + \frac{105893685674861}{8044380526035736} a^{7} + \frac{2505107077392351}{8044380526035736} a^{6} - \frac{2516039306086771}{8044380526035736} a^{5} - \frac{124582086399715}{349755675045032} a^{4} - \frac{19893898925827}{87438918761258} a^{3} + \frac{402565356683382}{1005547565754467} a^{2} + \frac{2615764307673847}{8044380526035736} a - \frac{217617811979943}{1005547565754467}$
Class group and class number
$C_{5}\times C_{100650}$, which has order $503250$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-319}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-87}) \), \(\Q(\sqrt{33}, \sqrt{-87})\), \(\Q(\zeta_{11})^+\), 10.0.48364216424306959.3, \(\Q(\zeta_{33})^+\), 10.0.1068409508282417367.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $29$ | 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |