Normalized defining polynomial
\( x^{20} - 4 x^{19} + 18 x^{18} - 40 x^{17} + 103 x^{16} - 338 x^{15} + 500 x^{14} - 140 x^{13} + 5007 x^{12} + 3444 x^{11} + 11502 x^{10} - 1420 x^{9} + 14599 x^{8} - 5866 x^{7} + 18276 x^{6} - 7274 x^{5} + 13842 x^{4} - 4690 x^{3} + 5254 x^{2} - 2944 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13806836326351181066487331815424=2^{30}\cdot 11^{16}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{3}{23} a^{17} - \frac{7}{23} a^{16} + \frac{3}{23} a^{15} + \frac{9}{23} a^{14} + \frac{1}{23} a^{13} + \frac{1}{23} a^{12} + \frac{5}{23} a^{11} + \frac{5}{23} a^{10} + \frac{6}{23} a^{9} - \frac{2}{23} a^{8} - \frac{8}{23} a^{7} + \frac{7}{23} a^{6} + \frac{2}{23} a^{5} + \frac{5}{23} a^{4} + \frac{6}{23} a^{3} - \frac{8}{23} a^{2} - \frac{8}{23} a$, $\frac{1}{5186145890146190629892691804588821334191033303} a^{19} + \frac{78377520571667323081701312192912666551615509}{5186145890146190629892691804588821334191033303} a^{18} - \frac{516620623975234739279980423961500493887439069}{5186145890146190629892691804588821334191033303} a^{17} - \frac{2155012423594201716342934992632320362911885493}{5186145890146190629892691804588821334191033303} a^{16} - \frac{15966909535551146259162122390837621076271847}{5186145890146190629892691804588821334191033303} a^{15} + \frac{2231522150270007200525618078010489249371701831}{5186145890146190629892691804588821334191033303} a^{14} - \frac{28224640844040163970824366207579610719683345}{225484603919399592604030078460383536269175361} a^{13} - \frac{2015734555529996722683531461633710317710919368}{5186145890146190629892691804588821334191033303} a^{12} - \frac{13189133495813884547831448432890799377440750}{225484603919399592604030078460383536269175361} a^{11} - \frac{1028478154315841033018087737705177872917364104}{5186145890146190629892691804588821334191033303} a^{10} + \frac{1047697814115073714326500601775127732137135097}{5186145890146190629892691804588821334191033303} a^{9} + \frac{1692534448873916506197697669676150455133697599}{5186145890146190629892691804588821334191033303} a^{8} - \frac{1527810699631499326192280299935248364406224886}{5186145890146190629892691804588821334191033303} a^{7} + \frac{415515908283656979527727589731538448197224705}{5186145890146190629892691804588821334191033303} a^{6} - \frac{252441330701083130816677936404338563654999662}{5186145890146190629892691804588821334191033303} a^{5} + \frac{1559467530273498803573784852079565574858865891}{5186145890146190629892691804588821334191033303} a^{4} + \frac{1664550749212693486041902540103481425775703488}{5186145890146190629892691804588821334191033303} a^{3} + \frac{66453430823786391568078777988222011210158006}{225484603919399592604030078460383536269175361} a^{2} + \frac{2070359878559871278847072248631050586351772379}{5186145890146190629892691804588821334191033303} a - \frac{53160823501799915864792139303614448593915783}{225484603919399592604030078460383536269175361}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 447363.730538 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.5048580365312.1, 10.0.116117348402176.1, 10.10.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |