Normalized defining polynomial
\( x^{20} + 245 x^{18} + 23145 x^{16} + 1117300 x^{14} + 30700600 x^{12} + 506522125 x^{10} + 5152499125 x^{8} + 32309321875 x^{6} + 120600750000 x^{4} + 243211512500 x^{2} + 201503753125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1379552006303010922834201740832000000000000000=2^{20}\cdot 5^{15}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $180.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{150375} a^{14} - \frac{557}{150375} a^{12} + \frac{218}{30075} a^{10} - \frac{298}{30075} a^{8} - \frac{239}{6015} a^{6} - \frac{41}{6015} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{150375} a^{15} - \frac{557}{150375} a^{13} + \frac{218}{30075} a^{11} - \frac{298}{30075} a^{9} - \frac{239}{6015} a^{7} - \frac{41}{6015} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{361651875} a^{16} + \frac{1}{4822025} a^{14} + \frac{16544}{24110125} a^{12} - \frac{28609}{4822025} a^{10} - \frac{98}{192881} a^{8} + \frac{594}{964405} a^{6} + \frac{585}{14837} a^{4} - \frac{186}{481} a^{2} + \frac{199}{1443}$, $\frac{1}{361651875} a^{17} + \frac{1}{4822025} a^{15} + \frac{16544}{24110125} a^{13} - \frac{28609}{4822025} a^{11} - \frac{98}{192881} a^{9} + \frac{594}{964405} a^{7} + \frac{585}{14837} a^{5} - \frac{186}{481} a^{3} + \frac{199}{1443} a$, $\frac{1}{182971049925155271525793125} a^{18} + \frac{102528527806134406}{182971049925155271525793125} a^{16} - \frac{13016641051537388621}{36594209985031054305158625} a^{14} + \frac{107893613488366399687927}{36594209985031054305158625} a^{12} + \frac{67281085674674429702693}{7318841997006210861031725} a^{10} - \frac{126402816801406126463749}{7318841997006210861031725} a^{8} + \frac{341100432362142860021}{3650295260352224868345} a^{6} + \frac{44252548706420325536}{3650295260352224868345} a^{4} - \frac{367221549438256238}{1820596139826546069} a^{2} - \frac{27057814013811305}{1820596139826546069}$, $\frac{1}{182971049925155271525793125} a^{19} + \frac{102528527806134406}{182971049925155271525793125} a^{17} - \frac{13016641051537388621}{36594209985031054305158625} a^{15} + \frac{107893613488366399687927}{36594209985031054305158625} a^{13} + \frac{67281085674674429702693}{7318841997006210861031725} a^{11} - \frac{126402816801406126463749}{7318841997006210861031725} a^{9} + \frac{341100432362142860021}{3650295260352224868345} a^{7} + \frac{44252548706420325536}{3650295260352224868345} a^{5} - \frac{367221549438256238}{1820596139826546069} a^{3} - \frac{27057814013811305}{1820596139826546069} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{3080148}$, which has order $98564736$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2526424.45141 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 28 conjugacy class representatives for t20n138 |
| Character table for t20n138 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||