Normalized defining polynomial
\( x^{20} + 14 x^{18} + 135 x^{16} + 660 x^{14} + 2317 x^{12} + 4630 x^{10} + 6589 x^{8} + 4340 x^{6} + 2019 x^{4} + 46 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1378292916885385650670001824763904=2^{12}\cdot 3^{10}\cdot 11^{8}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{28} a^{16} + \frac{1}{14} a^{14} + \frac{1}{14} a^{12} - \frac{1}{4} a^{11} + \frac{5}{28} a^{10} - \frac{1}{4} a^{9} - \frac{5}{28} a^{8} - \frac{1}{4} a^{7} + \frac{1}{28} a^{6} + \frac{1}{4} a^{5} + \frac{5}{14} a^{4} + \frac{1}{4} a^{3} - \frac{5}{28} a^{2} + \frac{1}{4} a + \frac{9}{28}$, $\frac{1}{56} a^{17} + \frac{1}{28} a^{15} - \frac{1}{8} a^{14} - \frac{5}{56} a^{13} - \frac{9}{56} a^{11} + \frac{1}{8} a^{10} + \frac{9}{56} a^{9} - \frac{1}{8} a^{8} - \frac{13}{56} a^{7} - \frac{3}{8} a^{6} + \frac{3}{7} a^{5} + \frac{3}{8} a^{4} - \frac{19}{56} a^{3} + \frac{1}{4} a^{2} - \frac{13}{28} a + \frac{3}{8}$, $\frac{1}{2220605550632} a^{18} + \frac{2294666107}{277575693829} a^{16} - \frac{1}{8} a^{15} + \frac{257402713613}{2220605550632} a^{14} + \frac{269515116401}{2220605550632} a^{12} + \frac{1}{8} a^{11} - \frac{86886629731}{2220605550632} a^{10} - \frac{1}{8} a^{9} + \frac{275519263959}{2220605550632} a^{8} + \frac{1}{8} a^{7} - \frac{36745445449}{79307341094} a^{6} - \frac{1}{8} a^{5} + \frac{48141119625}{317229364376} a^{4} - \frac{1}{4} a^{3} + \frac{253974903629}{555151387658} a^{2} + \frac{3}{8} a - \frac{294083528105}{1110302775316}$, $\frac{1}{2220605550632} a^{19} + \frac{2294666107}{277575693829} a^{17} - \frac{1}{56} a^{16} + \frac{257402713613}{2220605550632} a^{15} - \frac{1}{28} a^{14} + \frac{269515116401}{2220605550632} a^{13} + \frac{5}{56} a^{12} - \frac{86886629731}{2220605550632} a^{11} + \frac{9}{56} a^{10} + \frac{275519263959}{2220605550632} a^{9} - \frac{9}{56} a^{8} + \frac{1454112549}{39653670547} a^{7} - \frac{15}{56} a^{6} - \frac{110473562563}{317229364376} a^{5} - \frac{3}{7} a^{4} - \frac{11800395100}{277575693829} a^{3} + \frac{19}{56} a^{2} - \frac{294083528105}{1110302775316} a - \frac{1}{28}$
Class group and class number
$C_{6}\times C_{18}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{923400373}{39653670547} a^{18} + \frac{51587174001}{158614682188} a^{16} + \frac{124245233665}{39653670547} a^{14} + \frac{2422067090135}{158614682188} a^{12} + \frac{8485543353779}{158614682188} a^{10} + \frac{16855956378065}{158614682188} a^{8} + \frac{23904161809423}{158614682188} a^{6} + \frac{3865253324013}{39653670547} a^{4} + \frac{7302810785543}{158614682188} a^{2} + \frac{83191590111}{79307341094} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6459109.84372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.6180196.1, 10.0.37125367565660352.1, 10.0.9281341891415088.1, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |