Normalized defining polynomial
\( x^{20} - 4 x^{19} + 33 x^{18} - 46 x^{17} + 803 x^{16} - 2924 x^{15} + 25680 x^{14} - 74980 x^{13} + 383096 x^{12} - 895320 x^{11} + 5238630 x^{10} - 19460856 x^{9} + 106843288 x^{8} - 375641044 x^{7} + 1357191693 x^{6} - 3391191716 x^{5} + 8213541501 x^{4} - 13729323890 x^{3} + 23426527875 x^{2} - 21846268820 x + 24743548045 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1374515453313585364601855186208000000000000000=2^{20}\cdot 3^{10}\cdot 5^{15}\cdot 31^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $180.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1860=2^{2}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1860}(1,·)$, $\chi_{1860}(901,·)$, $\chi_{1860}(841,·)$, $\chi_{1860}(1163,·)$, $\chi_{1860}(1489,·)$, $\chi_{1860}(467,·)$, $\chi_{1860}(469,·)$, $\chi_{1860}(407,·)$, $\chi_{1860}(721,·)$, $\chi_{1860}(47,·)$, $\chi_{1860}(349,·)$, $\chi_{1860}(287,·)$, $\chi_{1860}(481,·)$, $\chi_{1860}(529,·)$, $\chi_{1860}(683,·)$, $\chi_{1860}(1427,·)$, $\chi_{1860}(109,·)$, $\chi_{1860}(1583,·)$, $\chi_{1860}(1523,·)$, $\chi_{1860}(1403,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{16} - \frac{2}{15} a^{15} + \frac{1}{15} a^{12} + \frac{1}{15} a^{10} + \frac{1}{3} a^{9} + \frac{1}{15} a^{8} + \frac{1}{3} a^{6} + \frac{2}{15} a^{5} + \frac{2}{5} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{4575} a^{17} - \frac{19}{915} a^{16} + \frac{386}{4575} a^{15} + \frac{13}{915} a^{14} + \frac{391}{4575} a^{13} + \frac{472}{4575} a^{12} - \frac{364}{4575} a^{11} + \frac{422}{4575} a^{10} + \frac{896}{4575} a^{9} - \frac{1988}{4575} a^{8} - \frac{52}{305} a^{7} - \frac{13}{75} a^{6} + \frac{211}{915} a^{5} + \frac{1022}{4575} a^{4} + \frac{277}{915} a^{3} + \frac{439}{915} a^{2} - \frac{65}{183} a - \frac{52}{915}$, $\frac{1}{349735249169587449794292675} a^{18} + \frac{2248301311167842858771}{23315683277972496652952845} a^{17} - \frac{3022106670871390079807374}{349735249169587449794292675} a^{16} + \frac{2808195627767251103013764}{69947049833917489958858535} a^{15} - \frac{26481748628476235562269834}{349735249169587449794292675} a^{14} + \frac{1586223786049536426045219}{116578416389862483264764225} a^{13} + \frac{48663895017655768076074846}{349735249169587449794292675} a^{12} + \frac{23515658025412594984021007}{349735249169587449794292675} a^{11} + \frac{28363964712801447059241931}{349735249169587449794292675} a^{10} + \frac{15875365230259694830186674}{116578416389862483264764225} a^{9} + \frac{21786301477652127570487376}{69947049833917489958858535} a^{8} - \frac{51507070985135292896034143}{349735249169587449794292675} a^{7} + \frac{3920919043014512161002131}{13989409966783497991771707} a^{6} - \frac{603483376246990109950741}{116578416389862483264764225} a^{5} + \frac{22966583524541220514170044}{69947049833917489958858535} a^{4} - \frac{2187579955389112850654882}{23315683277972496652952845} a^{3} - \frac{2695626058286868613678039}{13989409966783497991771707} a^{2} + \frac{27167402148138698993882768}{69947049833917489958858535} a - \frac{1386170161876661651862444}{4663136655594499330590569}$, $\frac{1}{46579703604010716065909390174188996643299388876909014575} a^{19} + \frac{1064134977163484962529939563}{3105313573600714404393959344945933109553292591793934305} a^{18} + \frac{978807913775259108421058246796741878155838059997306}{46579703604010716065909390174188996643299388876909014575} a^{17} - \frac{170782975071866154761699288281500262255909988004453727}{9315940720802143213181878034837799328659877775381802915} a^{16} - \frac{1847279462642021599087604920666337029620960903146067509}{46579703604010716065909390174188996643299388876909014575} a^{15} - \frac{2537056479493226826352810709565857774772209598080238621}{15526567868003572021969796724729665547766462958969671525} a^{14} - \frac{4070584721822840127629953787728466171845465130933222764}{46579703604010716065909390174188996643299388876909014575} a^{13} + \frac{1586528604202695469025227401937581433255668152782889437}{46579703604010716065909390174188996643299388876909014575} a^{12} - \frac{2004543163303197793605688550390805871132641849344582479}{46579703604010716065909390174188996643299388876909014575} a^{11} - \frac{1139814174952694075945381788383989290738708076601925966}{15526567868003572021969796724729665547766462958969671525} a^{10} + \frac{1886319058275841766819601626899673817612447995527790539}{9315940720802143213181878034837799328659877775381802915} a^{9} - \frac{2748551386459880594235164918782116637543539423464437231}{15526567868003572021969796724729665547766462958969671525} a^{8} - \frac{2117600909033913643847109342888591141662978387816089333}{9315940720802143213181878034837799328659877775381802915} a^{7} + \frac{4555124415785292743972295785000896426356502042750008037}{46579703604010716065909390174188996643299388876909014575} a^{6} - \frac{4283508193849603260869502763788016171710284282650955683}{9315940720802143213181878034837799328659877775381802915} a^{5} + \frac{275933921868705239966765377313385056918407713088995863}{3105313573600714404393959344945933109553292591793934305} a^{4} + \frac{396675801977090658935916862381111353414905942726064022}{1863188144160428642636375606967559865731975555076360583} a^{3} - \frac{901778068683258144655248906312058457978846144440365494}{3105313573600714404393959344945933109553292591793934305} a^{2} - \frac{115458408438292086426225844999340182358428151030137648}{1863188144160428642636375606967559865731975555076360583} a + \frac{1166134326252282329279474676092659190022117795431194}{621062714720142880878791868989186621910658518358786861}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{586882}$, which has order $18780224$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24173706.832424585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, 5.5.923521.1, 10.10.2665284492003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.10.8.1 | $x^{10} - 20491 x^{5} + 239127552$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 31.10.8.1 | $x^{10} - 20491 x^{5} + 239127552$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |