Normalized defining polynomial
\( x^{20} - 5 x^{19} + 16 x^{18} + 3 x^{17} + 57 x^{16} - 202 x^{15} + 43 x^{14} - 817 x^{13} + 2557 x^{12} - 1698 x^{11} - 1837 x^{10} + 5343 x^{9} - 4748 x^{8} - 3541 x^{7} + 14483 x^{6} - 5772 x^{5} + 6580 x^{4} + 6848 x^{3} + 192 x^{2} - 2048 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1368208637864347439721375491751936=2^{16}\cdot 3^{2}\cdot 41^{2}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{7} - \frac{1}{4} a^{5} + \frac{5}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{10} - \frac{1}{32} a^{8} - \frac{3}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{9}{32} a^{4} - \frac{7}{16} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{5}{32} a^{5} + \frac{1}{16} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{64} a^{9} + \frac{3}{64} a^{8} + \frac{3}{16} a^{7} + \frac{9}{64} a^{6} + \frac{11}{64} a^{5} + \frac{15}{64} a^{4} + \frac{5}{16} a^{3} - \frac{5}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} + \frac{1}{128} a^{13} - \frac{1}{64} a^{12} + \frac{1}{128} a^{11} + \frac{3}{128} a^{10} + \frac{1}{128} a^{9} + \frac{1}{64} a^{8} + \frac{21}{128} a^{7} - \frac{21}{128} a^{6} + \frac{21}{128} a^{5} - \frac{29}{64} a^{4} - \frac{15}{32} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{20352} a^{16} + \frac{11}{5088} a^{15} - \frac{41}{10176} a^{14} - \frac{69}{6784} a^{13} + \frac{77}{20352} a^{12} + \frac{1}{848} a^{11} - \frac{223}{10176} a^{10} - \frac{137}{6784} a^{9} + \frac{845}{20352} a^{8} - \frac{1033}{5088} a^{7} + \frac{581}{3392} a^{6} - \frac{1163}{20352} a^{5} + \frac{125}{2544} a^{4} + \frac{2419}{5088} a^{3} + \frac{257}{1272} a^{2} + \frac{25}{636} a - \frac{50}{159}$, $\frac{1}{40704} a^{17} + \frac{49}{40704} a^{15} - \frac{1}{159} a^{14} + \frac{61}{20352} a^{13} - \frac{23}{5088} a^{12} + \frac{565}{40704} a^{11} + \frac{275}{5088} a^{10} + \frac{1117}{20352} a^{9} - \frac{235}{5088} a^{8} - \frac{5347}{40704} a^{7} - \frac{467}{2544} a^{6} - \frac{4591}{40704} a^{5} - \frac{109}{636} a^{4} + \frac{1169}{3392} a^{3} + \frac{143}{318} a^{2} + \frac{145}{636} a - \frac{13}{159}$, $\frac{1}{162816} a^{18} - \frac{1}{54272} a^{16} - \frac{1}{256} a^{15} + \frac{201}{27136} a^{14} + \frac{289}{20352} a^{13} - \frac{895}{162816} a^{12} - \frac{1193}{40704} a^{11} - \frac{2869}{81408} a^{10} - \frac{823}{20352} a^{9} + \frac{3075}{54272} a^{8} + \frac{9077}{40704} a^{7} - \frac{16051}{162816} a^{6} - \frac{287}{2544} a^{5} - \frac{13309}{40704} a^{4} + \frac{175}{424} a^{3} - \frac{163}{636} a^{2} - \frac{8}{53} a + \frac{7}{159}$, $\frac{1}{13599163523040406318080} a^{19} - \frac{30709542833611837}{13599163523040406318080} a^{18} - \frac{5205216728379761}{906610901536027087872} a^{17} + \frac{22276379135163627}{1511018169226711813120} a^{16} - \frac{2641898719922964139}{2266527253840067719680} a^{15} + \frac{49659520839293363233}{6799581761520203159040} a^{14} + \frac{6963526720976620249}{1511018169226711813120} a^{13} + \frac{9499523371623355031}{13599163523040406318080} a^{12} + \frac{2249640483904816791}{151101816922671181312} a^{11} - \frac{48957557112606531413}{2266527253840067719680} a^{10} - \frac{235880746706307923191}{13599163523040406318080} a^{9} - \frac{145898366004094176869}{2719832704608081263616} a^{8} + \frac{325443424765584342893}{1511018169226711813120} a^{7} - \frac{194818461447396498413}{2719832704608081263616} a^{6} + \frac{41856865343549611693}{849947720190025394880} a^{5} - \frac{176569448948455926107}{3399790880760101579520} a^{4} + \frac{341623745437389689891}{849947720190025394880} a^{3} + \frac{89388975299924989969}{212486930047506348720} a^{2} - \frac{2090514956019263081}{5312173251187658718} a + \frac{6414890661088758083}{13280433127969146795}$
Class group and class number
$C_{120}$, which has order $120$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7826958.70528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 22 conjugacy class representatives for t20n140 |
| Character table for t20n140 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 5.5.2382032.1, 10.0.36989304371187456.1, 10.0.697911403229952.1, 10.10.300726051798272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53 | Data not computed | ||||||