Normalized defining polynomial
\( x^{20} + 29 x^{18} + 373 x^{16} + 2732 x^{14} + 12704 x^{12} + 38962 x^{10} + 76742 x^{8} + 94643 x^{6} + 51635 x^{4} + 41965 x^{2} + 27889 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1364286026444870446587635449=11^{10}\cdot 47^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{12} - \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{3}{10} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{12} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{17} + \frac{1}{5} a^{13} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} - \frac{1}{2} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{3701284276302319037810} a^{18} + \frac{22297066740107349169}{740256855260463807562} a^{16} - \frac{19045272667591586797}{3701284276302319037810} a^{14} - \frac{184881224128502147415}{740256855260463807562} a^{12} + \frac{8814749411945877297}{1850642138151159518905} a^{10} - \frac{185223620214451929157}{1850642138151159518905} a^{8} + \frac{723024793921183060293}{3701284276302319037810} a^{6} - \frac{1}{2} a^{5} - \frac{1590253515635591325319}{3701284276302319037810} a^{4} - \frac{276665966414720303207}{1850642138151159518905} a^{2} - \frac{1}{2} a + \frac{904581539658107673891}{3701284276302319037810}$, $\frac{1}{618114474142487279314270} a^{19} + \frac{14675815558244428572272}{309057237071243639657135} a^{17} - \frac{853199910816292537376}{61811447414248727931427} a^{15} + \frac{13417246996439213414299}{61811447414248727931427} a^{13} + \frac{33690501663763049121368}{309057237071243639657135} a^{11} + \frac{156193877647159191441049}{618114474142487279314270} a^{9} - \frac{15214001581736459320126}{61811447414248727931427} a^{7} - \frac{1}{2} a^{6} + \frac{22381795891117563807731}{61811447414248727931427} a^{5} - \frac{157857913675677999713339}{618114474142487279314270} a^{3} + \frac{115747295976646291864727}{309057237071243639657135} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 186660.272497 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{517}) \), \(\Q(\sqrt{-11}, \sqrt{-47})\), 5.1.2209.1 x5, 10.0.229345007.1, 10.0.785877504731.2 x5, 10.2.36936242722357.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |