Normalized defining polynomial
\( x^{20} - 2 x^{19} + 115 x^{18} - 210 x^{17} + 6643 x^{16} - 10626 x^{15} + 250786 x^{14} - 339872 x^{13} + 6764726 x^{12} - 7510492 x^{11} + 134567521 x^{10} - 117207804 x^{9} + 1977453966 x^{8} - 1271790984 x^{7} + 20997115047 x^{6} - 9132285094 x^{5} + 152974017624 x^{4} - 39041186866 x^{3} + 686231001401 x^{2} - 75540326030 x + 1432950026551 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136101614161182402364761324912640000000000=2^{30}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(69,·)$, $\chi_{3080}(2689,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1301,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(729,·)$, $\chi_{3080}(2589,·)$, $\chi_{3080}(741,·)$, $\chi_{3080}(1189,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(2869,·)$, $\chi_{3080}(2029,·)$, $\chi_{3080}(449,·)$, $\chi_{3080}(181,·)$, $\chi_{3080}(169,·)$, $\chi_{3080}(1849,·)$, $\chi_{3080}(1021,·)$, $\chi_{3080}(2421,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} - \frac{131}{331} a^{17} - \frac{152}{331} a^{16} + \frac{132}{331} a^{15} - \frac{165}{331} a^{14} - \frac{150}{331} a^{13} + \frac{63}{331} a^{12} - \frac{67}{331} a^{11} + \frac{35}{331} a^{10} - \frac{86}{331} a^{9} - \frac{72}{331} a^{8} - \frac{6}{331} a^{7} + \frac{165}{331} a^{6} + \frac{9}{331} a^{5} + \frac{104}{331} a^{4} - \frac{152}{331} a^{3} - \frac{121}{331} a^{2} + \frac{160}{331}$, $\frac{1}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{19} + \frac{80574746984535546216118910586218975315226011235224593041771874218863137295025848}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{18} - \frac{33976716460987125534931521754860595845857124713919292817217266074358828837366536570}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{17} - \frac{32158691188383156121737427833514322809026229373105527537895932611191047247029536219}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{16} + \frac{25005758631177081818059567532008755607355123986887501795203352035356996821972856651}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{15} + \frac{16878073020597200000559313306754555839112731823299967969188046226875547796745259609}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{14} - \frac{40541873535834735974351224172168940166816265990089501674230779601809997847615596215}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{13} + \frac{33042449113053047350426124520134207501587661086877279043598878803710576149505551099}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{12} + \frac{6224305168028778288695490938544607945067500026027161721888368652690048798563705742}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{11} - \frac{818893359522555789155751015811477465465284206818669746279224024882356771383165371}{2650669369624115487658134130621077792205347471581675958841531381955774577105319717} a^{10} + \frac{27745894436599240436504654934874368692475682317352050840589644846634514464246435682}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{9} + \frac{42612336872828599250903782347062271904221317004492251951203702596502641090632850016}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{8} + \frac{7843308213869995823402270052319307477198259408312748252632414333296496504075722751}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{7} + \frac{38159614593668879244731681821540092591946030068006349811994285076913805369750786628}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{6} - \frac{45457544439167904661189371103676015885439955778303552704777903344983767960548530534}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{5} - \frac{13465304699199168779463304070403190302484855949121589361735136985093809062639798593}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{4} - \frac{6014600466118807178921563266138996430203386348146310419997262687733574616476438860}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{3} - \frac{1975573167545847355954700921355026657685874181969286807673851455395343953516795482}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a^{2} - \frac{3335001926089704699143283900159288799487022694067913071351619163464776437150332103}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831} a + \frac{20149238378910849322432432485674386880201141046810577278659925841138258879313728757}{113978782893836965969299767616706345064829941278012066230185849424098306815528747831}$
Class group and class number
$C_{11}\times C_{544808}$, which has order $5992888$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.5991815038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.368919522607820800000.1, 10.0.118054247234502656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |