Normalized defining polynomial
\( x^{20} - 6 x^{19} + 67 x^{18} - 302 x^{17} + 2435 x^{16} - 9340 x^{15} + 63172 x^{14} - 207826 x^{13} + 1225192 x^{12} - 3434802 x^{11} + 18238950 x^{10} - 42959640 x^{9} + 208321354 x^{8} - 399713644 x^{7} + 1768558421 x^{6} - 2620416334 x^{5} + 10452990189 x^{4} - 10764612716 x^{3} + 37784285875 x^{2} - 20527319894 x + 61511627759 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136101614161182402364761324912640000000000=2^{30}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1541,·)$, $\chi_{3080}(1609,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(141,·)$, $\chi_{3080}(421,·)$, $\chi_{3080}(2381,·)$, $\chi_{3080}(2729,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1049,·)$, $\chi_{3080}(2589,·)$, $\chi_{3080}(69,·)$, $\chi_{3080}(1189,·)$, $\chi_{3080}(489,·)$, $\chi_{3080}(2029,·)$, $\chi_{3080}(1329,·)$, $\chi_{3080}(2869,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2941,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} + \frac{17}{43} a^{14} + \frac{10}{43} a^{13} - \frac{5}{43} a^{12} - \frac{17}{43} a^{11} - \frac{12}{43} a^{10} - \frac{9}{43} a^{9} + \frac{14}{43} a^{8} + \frac{16}{43} a^{7} + \frac{18}{43} a^{6} + \frac{14}{43} a^{5} - \frac{8}{43} a^{4} - \frac{15}{43} a^{3} + \frac{4}{43} a^{2} + \frac{14}{43} a + \frac{1}{43}$, $\frac{1}{43} a^{16} - \frac{21}{43} a^{14} - \frac{3}{43} a^{13} - \frac{18}{43} a^{12} + \frac{19}{43} a^{11} - \frac{20}{43} a^{10} - \frac{5}{43} a^{9} - \frac{7}{43} a^{8} + \frac{4}{43} a^{7} + \frac{9}{43} a^{6} + \frac{12}{43} a^{5} - \frac{8}{43} a^{4} + \frac{1}{43} a^{3} - \frac{11}{43} a^{2} + \frac{21}{43} a - \frac{17}{43}$, $\frac{1}{43} a^{17} + \frac{10}{43} a^{14} + \frac{20}{43} a^{13} + \frac{10}{43} a^{11} + \frac{1}{43} a^{10} + \frac{19}{43} a^{9} - \frac{3}{43} a^{8} + \frac{1}{43} a^{7} + \frac{3}{43} a^{6} - \frac{15}{43} a^{5} + \frac{5}{43} a^{4} + \frac{18}{43} a^{3} + \frac{19}{43} a^{2} + \frac{19}{43} a + \frac{21}{43}$, $\frac{1}{150425776319030961859769} a^{18} + \frac{432523613910557643143}{150425776319030961859769} a^{17} - \frac{1023764676155428173874}{150425776319030961859769} a^{16} - \frac{1740548513890477452460}{150425776319030961859769} a^{15} - \frac{20688928257657795540377}{150425776319030961859769} a^{14} - \frac{23443132972330127914747}{150425776319030961859769} a^{13} - \frac{30372381038379163250889}{150425776319030961859769} a^{12} + \frac{31999602766326631817350}{150425776319030961859769} a^{11} + \frac{10409546278887876371720}{150425776319030961859769} a^{10} + \frac{33692550140539227253297}{150425776319030961859769} a^{9} + \frac{65002915159591248640139}{150425776319030961859769} a^{8} + \frac{8778659304530415216285}{150425776319030961859769} a^{7} + \frac{23274881252260128497416}{150425776319030961859769} a^{6} + \frac{67734774389018638960684}{150425776319030961859769} a^{5} + \frac{48662701641673829674492}{150425776319030961859769} a^{4} + \frac{12564316557737961451202}{150425776319030961859769} a^{3} - \frac{25651840174684310394320}{150425776319030961859769} a^{2} - \frac{44077803633281393733}{152098863821062651021} a + \frac{8637398615849266009262}{150425776319030961859769}$, $\frac{1}{258756470684492258957096477179242369345047515716135222161} a^{19} - \frac{469149347704586181102944151058184}{258756470684492258957096477179242369345047515716135222161} a^{18} - \frac{335386401052530112317737279282549973771613221505640796}{258756470684492258957096477179242369345047515716135222161} a^{17} + \frac{330841679751313402797254995510327133340189875160326208}{258756470684492258957096477179242369345047515716135222161} a^{16} + \frac{3292025482977134544145966290033253611076567991767809}{11250281334108359085091151181706189971523805031136314007} a^{15} + \frac{13812050813164141864786811707474598122050534033684960346}{258756470684492258957096477179242369345047515716135222161} a^{14} + \frac{84250038545402936801515320920535091707530662095024400848}{258756470684492258957096477179242369345047515716135222161} a^{13} - \frac{4878562192702872711489476934347839224027329720433905535}{258756470684492258957096477179242369345047515716135222161} a^{12} + \frac{179501650916984653172432855632162235618834812424351909}{11250281334108359085091151181706189971523805031136314007} a^{11} + \frac{48893974620157707517180078983424476601622604410387239465}{258756470684492258957096477179242369345047515716135222161} a^{10} + \frac{52086709808267583533638195724218566480546811374184438598}{258756470684492258957096477179242369345047515716135222161} a^{9} + \frac{94598292110666292754791500684567487451483236652577475402}{258756470684492258957096477179242369345047515716135222161} a^{8} - \frac{100149765927627146308596941010971542641111541739535153891}{258756470684492258957096477179242369345047515716135222161} a^{7} + \frac{11545695821135726468809589827409893094320987138809662551}{258756470684492258957096477179242369345047515716135222161} a^{6} + \frac{8103405244914585556901313955327452532299656421907860534}{258756470684492258957096477179242369345047515716135222161} a^{5} - \frac{15271540306444526579760845552143601967983229634583681267}{258756470684492258957096477179242369345047515716135222161} a^{4} - \frac{46840512200742928213370166851085683684532724965800193752}{258756470684492258957096477179242369345047515716135222161} a^{3} + \frac{74658789440843854747581403046394939122945755538373823918}{258756470684492258957096477179242369345047515716135222161} a^{2} - \frac{113306520134559852299421893837249253206047140909939765724}{258756470684492258957096477179242369345047515716135222161} a - \frac{169764758439427408499010960898698945170634737596576997}{733021163412159373816137329119666768682854152170354737}$
Class group and class number
$C_{2}\times C_{681010}$, which has order $1362020$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.2507325789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1, 10.0.368919522607820800000.1, 10.0.11258530353021875.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |