Normalized defining polynomial
\( x^{20} - 27 x^{18} + 352 x^{16} - 2709 x^{14} + 13339 x^{12} - 42123 x^{10} + 84004 x^{8} - 96768 x^{6} + 59840 x^{4} - 11520 x^{2} + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13610161416118240236476132491264=2^{20}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(308=2^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(69,·)$, $\chi_{308}(71,·)$, $\chi_{308}(265,·)$, $\chi_{308}(267,·)$, $\chi_{308}(141,·)$, $\chi_{308}(15,·)$, $\chi_{308}(279,·)$, $\chi_{308}(27,·)$, $\chi_{308}(223,·)$, $\chi_{308}(97,·)$, $\chi_{308}(155,·)$, $\chi_{308}(295,·)$, $\chi_{308}(169,·)$, $\chi_{308}(225,·)$, $\chi_{308}(111,·)$, $\chi_{308}(113,·)$, $\chi_{308}(181,·)$, $\chi_{308}(251,·)$, $\chi_{308}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{9} + \frac{3}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{4} a^{10} - \frac{5}{16} a^{8} - \frac{1}{16} a^{6} - \frac{7}{16} a^{4}$, $\frac{1}{32} a^{15} + \frac{1}{32} a^{13} - \frac{1}{8} a^{11} - \frac{5}{32} a^{9} + \frac{15}{32} a^{7} - \frac{7}{32} a^{5}$, $\frac{1}{1472} a^{16} - \frac{3}{1472} a^{14} + \frac{3}{184} a^{12} + \frac{107}{1472} a^{10} - \frac{541}{1472} a^{8} - \frac{67}{1472} a^{6} + \frac{1}{16} a^{4} + \frac{19}{46} a^{2} - \frac{10}{23}$, $\frac{1}{2944} a^{17} - \frac{3}{2944} a^{15} + \frac{3}{368} a^{13} + \frac{107}{2944} a^{11} - \frac{541}{2944} a^{9} - \frac{67}{2944} a^{7} - \frac{15}{32} a^{5} + \frac{19}{92} a^{3} - \frac{5}{23} a$, $\frac{1}{1583185894022912} a^{18} - \frac{115100223983}{1583185894022912} a^{16} + \frac{5805435085519}{395796473505728} a^{14} - \frac{53492173114581}{1583185894022912} a^{12} + \frac{388525610082623}{1583185894022912} a^{10} - \frac{34741291812711}{1583185894022912} a^{8} - \frac{2996585661244}{6184319898527} a^{6} + \frac{41649316366383}{98949118376432} a^{4} + \frac{1658356294849}{12368639797054} a^{2} + \frac{1701718003759}{6184319898527}$, $\frac{1}{3166371788045824} a^{19} - \frac{115100223983}{3166371788045824} a^{17} + \frac{5805435085519}{791592947011456} a^{15} - \frac{53492173114581}{3166371788045824} a^{13} + \frac{388525610082623}{3166371788045824} a^{11} - \frac{34741291812711}{3166371788045824} a^{9} - \frac{1498292830622}{6184319898527} a^{7} - \frac{57299802010049}{197898236752864} a^{5} + \frac{1658356294849}{24737279594108} a^{3} - \frac{2241300947384}{6184319898527} a$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{31296783}{44080853504} a^{19} + \frac{844854913}{44080853504} a^{17} - \frac{2752275337}{11020213376} a^{15} + \frac{84631021531}{44080853504} a^{13} - \frac{415661770801}{44080853504} a^{11} + \frac{56732643007}{1916558848} a^{9} - \frac{80157857823}{1377526672} a^{7} + \frac{177545250757}{2755053344} a^{5} - \frac{3055337375}{86095417} a^{3} + \frac{534189213}{172190834} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4006867.75615 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{7})\), \(\Q(\zeta_{11})^+\), 10.0.219503494144.1, 10.10.3689195226078208.1, 10.0.3602729712967.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |