Normalized defining polynomial
\( x^{20} - 8 x^{19} + 67 x^{18} - 340 x^{17} + 1876 x^{16} - 7492 x^{15} + 32388 x^{14} - 106790 x^{13} + 387206 x^{12} - 1073170 x^{11} + 3365284 x^{10} - 7824820 x^{9} + 21607959 x^{8} - 41225306 x^{7} + 101680463 x^{6} - 151023234 x^{5} + 338081718 x^{4} - 347924432 x^{3} + 727021696 x^{2} - 383174430 x + 779300677 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13600636709996264858725830959545495281=3^{10}\cdot 11^{18}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(759=3\cdot 11\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{759}(1,·)$, $\chi_{759}(643,·)$, $\chi_{759}(68,·)$, $\chi_{759}(70,·)$, $\chi_{759}(392,·)$, $\chi_{759}(461,·)$, $\chi_{759}(206,·)$, $\chi_{759}(530,·)$, $\chi_{759}(346,·)$, $\chi_{759}(91,·)$, $\chi_{759}(668,·)$, $\chi_{759}(413,·)$, $\chi_{759}(229,·)$, $\chi_{759}(553,·)$, $\chi_{759}(298,·)$, $\chi_{759}(367,·)$, $\chi_{759}(689,·)$, $\chi_{759}(691,·)$, $\chi_{759}(116,·)$, $\chi_{759}(758,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{79414079104701176390307522051083639006898174410469130886810266} a^{19} + \frac{9208723473775570628670508550913363543610186094108185131365064}{39707039552350588195153761025541819503449087205234565443405133} a^{18} + \frac{13337998338937537016660594781637256124269059019546517434517279}{79414079104701176390307522051083639006898174410469130886810266} a^{17} - \frac{6467834423321802878204041952186620319292179175244715843954815}{79414079104701176390307522051083639006898174410469130886810266} a^{16} - \frac{4069613752717530919885155171058548499977730863352976316356975}{39707039552350588195153761025541819503449087205234565443405133} a^{15} + \frac{15441168027906228851496239115133029546719822543646630623779169}{79414079104701176390307522051083639006898174410469130886810266} a^{14} + \frac{5968446359025964706860442674378348571195513600174146022292597}{79414079104701176390307522051083639006898174410469130886810266} a^{13} + \frac{8616125511045106090975751262930104620653996542584968504044613}{79414079104701176390307522051083639006898174410469130886810266} a^{12} + \frac{12204968412694980951459584221940459429841415342554832105259643}{79414079104701176390307522051083639006898174410469130886810266} a^{11} - \frac{6752234627315163815019271122638328514625793257778521941800478}{39707039552350588195153761025541819503449087205234565443405133} a^{10} + \frac{16561788277520409470132886910731547591274751107292712489203475}{79414079104701176390307522051083639006898174410469130886810266} a^{9} - \frac{12097989065711740474487053978075960988274838370702045698153001}{39707039552350588195153761025541819503449087205234565443405133} a^{8} + \frac{19507982272110224887286361786538213000354024561719114907687988}{39707039552350588195153761025541819503449087205234565443405133} a^{7} + \frac{51004501793724505735323844651950638392702871774331598136578}{201558576407871006066770360535745276667254249772764291590889} a^{6} - \frac{4037345725091540145639456414738492671103627408603154672301847}{79414079104701176390307522051083639006898174410469130886810266} a^{5} + \frac{23250609195582623946796617642960571391679772298091149102205341}{79414079104701176390307522051083639006898174410469130886810266} a^{4} + \frac{3987341530032241320486259458758910930391904183001048897679621}{39707039552350588195153761025541819503449087205234565443405133} a^{3} + \frac{9121274804184719654973978171491782286752282413378464812070657}{79414079104701176390307522051083639006898174410469130886810266} a^{2} - \frac{39442855509297972918716893483865538795657719901018240720457471}{79414079104701176390307522051083639006898174410469130886810266} a - \frac{55505862662662468183200237853424796591106819238102695935645}{201558576407871006066770360535745276667254249772764291590889}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{12}\times C_{132}$, which has order $101376$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-759}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-23}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.0.3687904108026165159.1, \(\Q(\zeta_{33})^+\), 10.0.1379687283212183.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |