Normalized defining polynomial
\( x^{20} - x^{19} + x^{18} + 18 x^{17} + 65 x^{16} - 304 x^{15} - 423 x^{14} + 3067 x^{13} - 2275 x^{12} - 14341 x^{11} + 51246 x^{10} + 5444 x^{9} - 242147 x^{8} + 271828 x^{7} + 432309 x^{6} - 1239844 x^{5} + 796807 x^{4} + 556458 x^{3} - 495304 x^{2} - 771760 x + 655664 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13448393894735192170762921142578125=3^{16}\cdot 5^{14}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{52} a^{18} - \frac{3}{26} a^{17} + \frac{1}{26} a^{16} - \frac{3}{26} a^{14} - \frac{1}{52} a^{13} + \frac{3}{52} a^{12} - \frac{9}{52} a^{10} + \frac{1}{13} a^{9} + \frac{5}{13} a^{8} - \frac{11}{52} a^{7} - \frac{7}{26} a^{6} + \frac{23}{52} a^{5} - \frac{7}{26} a^{4} - \frac{5}{13} a^{3} + \frac{5}{26} a^{2} + \frac{4}{13} a + \frac{4}{13}$, $\frac{1}{2111871554467734448413985703897634840184984966074721580296} a^{19} + \frac{12369145118241993207565593405821801597887188812538031929}{2111871554467734448413985703897634840184984966074721580296} a^{18} + \frac{26545271664349855129724641478755469273502252392779884999}{2111871554467734448413985703897634840184984966074721580296} a^{17} + \frac{29750308303331273097781006399378562764029253572191569657}{1055935777233867224206992851948817420092492483037360790148} a^{16} - \frac{236303148345816361596901094142443099847296463214584069641}{2111871554467734448413985703897634840184984966074721580296} a^{15} + \frac{94616550770572653344650948141954165439774612821052981745}{1055935777233867224206992851948817420092492483037360790148} a^{14} - \frac{13947948903791110438762582566950226317836251584266539275}{2111871554467734448413985703897634840184984966074721580296} a^{13} - \frac{434048416592703556189185456341230404773385020142803772655}{2111871554467734448413985703897634840184984966074721580296} a^{12} + \frac{275849202573902761836532375912155213307731003255358250809}{2111871554467734448413985703897634840184984966074721580296} a^{11} - \frac{87708758542120823104365990548645585887515403396506786239}{2111871554467734448413985703897634840184984966074721580296} a^{10} + \frac{54258314895786035686905262064671074118595109823118693645}{1055935777233867224206992851948817420092492483037360790148} a^{9} - \frac{370607139875179403175746872547685647342682536616776523135}{1055935777233867224206992851948817420092492483037360790148} a^{8} + \frac{127108900504955081140206100783458789578394426233012040451}{2111871554467734448413985703897634840184984966074721580296} a^{7} - \frac{87240967706642311435962351501331797895386909011701846021}{1055935777233867224206992851948817420092492483037360790148} a^{6} - \frac{445890117139942172526290944528776563454384050241474432037}{2111871554467734448413985703897634840184984966074721580296} a^{5} - \frac{136384043654470734189559695771924622301800456159432933343}{527967888616933612103496425974408710046246241518680395074} a^{4} - \frac{511307314432336501689796523327799448138897428405739099231}{2111871554467734448413985703897634840184984966074721580296} a^{3} + \frac{324157541308906932863724625228615069777284548228916588911}{1055935777233867224206992851948817420092492483037360790148} a^{2} - \frac{21067285402264245904753241834608888326844226979837787531}{527967888616933612103496425974408710046246241518680395074} a + \frac{114502799515733012244014674650604259740427255474425125427}{263983944308466806051748212987204355023123120759340197537}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63030233.332374446 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.54925.1, 5.1.1711125.1, 10.2.38063333953125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||