Normalized defining polynomial
\( x^{20} - 10 x^{19} + 45 x^{18} - 110 x^{17} + 146 x^{16} - 78 x^{15} + 27 x^{14} - 300 x^{13} + 1009 x^{12} - 1634 x^{11} + 1576 x^{10} - 692 x^{9} + 124 x^{8} - 600 x^{7} + 1992 x^{6} - 2136 x^{5} + 1184 x^{4} + 16 x^{3} + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13378570905081069605274292224=2^{12}\cdot 3^{2}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{24} a^{14} - \frac{1}{8} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} + \frac{5}{24} a^{6} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{24} a^{15} + \frac{1}{24} a^{12} - \frac{1}{12} a^{11} + \frac{1}{6} a^{10} - \frac{1}{24} a^{9} - \frac{1}{6} a^{7} - \frac{1}{24} a^{6} - \frac{1}{4} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{144} a^{16} - \frac{1}{48} a^{15} + \frac{1}{12} a^{12} + \frac{1}{24} a^{11} - \frac{1}{48} a^{10} - \frac{11}{48} a^{9} + \frac{17}{72} a^{8} - \frac{11}{72} a^{7} - \frac{1}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{12} a^{4} + \frac{11}{36} a^{3} + \frac{1}{18} a^{2} - \frac{5}{18} a + \frac{2}{9}$, $\frac{1}{144} a^{17} - \frac{1}{48} a^{15} - \frac{1}{16} a^{11} + \frac{5}{24} a^{10} + \frac{1}{144} a^{9} + \frac{2}{9} a^{8} + \frac{1}{24} a^{7} - \frac{1}{24} a^{6} + \frac{1}{18} a^{4} + \frac{11}{36} a^{3} + \frac{7}{18} a^{2} + \frac{7}{18} a - \frac{1}{6}$, $\frac{1}{864} a^{18} - \frac{1}{864} a^{16} - \frac{1}{48} a^{15} - \frac{1}{72} a^{14} - \frac{11}{288} a^{12} + \frac{1}{48} a^{11} + \frac{187}{864} a^{10} - \frac{35}{432} a^{9} - \frac{101}{432} a^{8} - \frac{1}{432} a^{7} - \frac{1}{12} a^{6} + \frac{25}{108} a^{5} - \frac{55}{216} a^{4} + \frac{1}{6} a^{3} + \frac{13}{36} a^{2} + \frac{47}{108} a + \frac{8}{27}$, $\frac{1}{175454575064352} a^{19} + \frac{12535313537}{21931821883044} a^{18} + \frac{30838069}{2113910542944} a^{17} - \frac{128754391825}{43863643766088} a^{16} - \frac{262735353749}{29242429177392} a^{15} + \frac{79259128357}{7310607294348} a^{14} + \frac{584008956913}{58484858354784} a^{13} + \frac{995737102769}{29242429177392} a^{12} - \frac{8107481027945}{175454575064352} a^{11} - \frac{339428448035}{7310607294348} a^{10} + \frac{956224444345}{10965910941522} a^{9} - \frac{3328810024961}{29242429177392} a^{8} - \frac{4110694784623}{21931821883044} a^{7} + \frac{6154095546419}{43863643766088} a^{6} + \frac{7021265313931}{43863643766088} a^{5} + \frac{10624334134117}{21931821883044} a^{4} + \frac{47460314075}{135381616562} a^{3} - \frac{4273291067713}{21931821883044} a^{2} - \frac{215250800189}{5482955470761} a - \frac{2571162087887}{10965910941522}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5355901.4732 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.4.115665772400832.1, 10.4.28916443100208.1, 10.2.38555257466944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 881 | Data not computed | ||||||