Normalized defining polynomial
\( x^{20} - 10 x^{19} + 53 x^{18} - 192 x^{17} + 905 x^{16} - 4180 x^{15} + 18294 x^{14} - 63680 x^{13} + 184128 x^{12} - 435736 x^{11} + 853479 x^{10} - 1378339 x^{9} + 1781990 x^{8} - 1790508 x^{7} + 1187558 x^{6} - 237809 x^{5} - 409139 x^{4} + 467764 x^{3} + 269196 x^{2} - 443775 x + 562195 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133508811261782548210805849619140625=3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{75} a^{14} - \frac{7}{75} a^{13} + \frac{1}{25} a^{12} - \frac{2}{75} a^{11} + \frac{1}{15} a^{10} - \frac{12}{25} a^{9} + \frac{19}{75} a^{8} + \frac{29}{75} a^{7} - \frac{8}{75} a^{6} + \frac{1}{25} a^{5} + \frac{23}{75} a^{4} - \frac{17}{75} a^{3} + \frac{4}{25} a^{2} - \frac{1}{3} a - \frac{7}{15}$, $\frac{1}{375} a^{15} - \frac{1}{375} a^{13} - \frac{11}{375} a^{12} + \frac{12}{125} a^{11} - \frac{31}{375} a^{10} - \frac{23}{375} a^{9} - \frac{1}{125} a^{8} - \frac{3}{25} a^{7} - \frac{143}{375} a^{6} + \frac{14}{375} a^{5} - \frac{37}{125} a^{4} + \frac{13}{375} a^{3} - \frac{46}{375} a^{2} - \frac{4}{25} a + \frac{26}{75}$, $\frac{1}{1875} a^{16} + \frac{2}{1875} a^{15} - \frac{2}{625} a^{14} + \frac{172}{1875} a^{13} + \frac{149}{1875} a^{12} - \frac{58}{625} a^{11} - \frac{22}{375} a^{10} + \frac{206}{1875} a^{9} - \frac{446}{1875} a^{8} + \frac{149}{625} a^{7} + \frac{518}{1875} a^{6} - \frac{698}{1875} a^{5} + \frac{192}{625} a^{4} + \frac{43}{375} a^{3} + \frac{163}{1875} a^{2} + \frac{34}{125} a - \frac{46}{125}$, $\frac{1}{1875} a^{17} + \frac{3}{625} a^{14} - \frac{7}{125} a^{13} + \frac{6}{625} a^{12} - \frac{59}{625} a^{11} - \frac{3}{625} a^{10} - \frac{38}{1875} a^{9} - \frac{172}{625} a^{8} + \frac{33}{625} a^{7} + \frac{162}{625} a^{6} + \frac{154}{625} a^{5} + \frac{226}{625} a^{4} - \frac{54}{625} a^{3} + \frac{83}{625} a^{2} + \frac{38}{375} a - \frac{38}{125}$, $\frac{1}{1739571401218921430625} a^{18} - \frac{1}{193285711246546825625} a^{17} - \frac{149448516330949487}{1739571401218921430625} a^{16} + \frac{47823525225903844}{69582856048756857225} a^{15} - \frac{9097090915189449664}{1739571401218921430625} a^{14} + \frac{14252281373331071728}{579857133739640476875} a^{13} - \frac{169770798841168615817}{1739571401218921430625} a^{12} + \frac{169270799187781236587}{1739571401218921430625} a^{11} - \frac{126051275849230858652}{1739571401218921430625} a^{10} + \frac{245099819518979615659}{1739571401218921430625} a^{9} - \frac{2462585248097114361}{7731428449861873025} a^{8} + \frac{13593845240138976601}{56115206490932949375} a^{7} - \frac{1523981369874731462}{6235022943436994375} a^{6} - \frac{687347018883672141094}{1739571401218921430625} a^{5} - \frac{20767621816365620111}{56115206490932949375} a^{4} + \frac{47166130724630355049}{579857133739640476875} a^{3} - \frac{456880393405588799}{964820522029351875} a^{2} + \frac{27137507793823248718}{69582856048756857225} a - \frac{75115353440229233}{708583055486322375}$, $\frac{1}{47401581111814390063100625} a^{19} + \frac{2723}{9480316222362878012620125} a^{18} - \frac{12281059655414924659934}{47401581111814390063100625} a^{17} - \frac{11410948908078698869666}{47401581111814390063100625} a^{16} + \frac{1980172827902656619188}{3160105407454292670873375} a^{15} + \frac{139918575096007712626187}{47401581111814390063100625} a^{14} - \frac{1545936811443508392501452}{47401581111814390063100625} a^{13} + \frac{1033434499995846057772303}{15800527037271463354366875} a^{12} - \frac{186275170375601882507366}{3160105407454292670873375} a^{11} - \frac{521229753468467280904034}{9480316222362878012620125} a^{10} + \frac{17629663862167208858239456}{47401581111814390063100625} a^{9} - \frac{3905127050020405353312316}{9480316222362878012620125} a^{8} + \frac{92376674432131726168456}{1529083261671431937519375} a^{7} + \frac{583893253313998042219364}{47401581111814390063100625} a^{6} - \frac{621109341281538375302126}{3160105407454292670873375} a^{5} + \frac{15929771607765800243862352}{47401581111814390063100625} a^{4} + \frac{5466378362766664214783726}{15800527037271463354366875} a^{3} - \frac{13002438102230151138214151}{47401581111814390063100625} a^{2} - \frac{1832806410438421274122457}{9480316222362878012620125} a - \frac{577907138165800440449}{19308179678946798396375}$
Class group and class number
$C_{2}\times C_{22}\times C_{88}$, which has order $3872$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6161971.68016 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3255}) \), \(\Q(\sqrt{-651}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-651})\), 5.1.10595025.1 x5, 10.0.365388575713284375.1, 10.0.73077715142656875.1 x5, 10.2.561272773753125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |