Normalized defining polynomial
\( x^{20} - 2 x^{19} + 37 x^{18} - 84 x^{17} + 462 x^{16} - 1512 x^{15} + 6553 x^{14} - 19235 x^{13} + 53719 x^{12} - 127455 x^{11} + 279153 x^{10} - 481338 x^{9} + 653452 x^{8} - 587336 x^{7} + 244207 x^{6} + 48357 x^{5} + 19266 x^{4} - 221220 x^{3} + 224100 x^{2} - 91125 x + 18225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133508811261782548210805849619140625=3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{45} a^{9} - \frac{1}{15} a^{8} - \frac{2}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{15} a^{4} + \frac{11}{45} a^{3} - \frac{1}{15} a^{2} - \frac{1}{3} a$, $\frac{1}{45} a^{10} + \frac{1}{15} a^{6} + \frac{1}{9} a^{4} - \frac{1}{5} a^{2}$, $\frac{1}{45} a^{11} + \frac{1}{15} a^{7} + \frac{1}{9} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{45} a^{12} + \frac{1}{15} a^{8} + \frac{1}{9} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{135} a^{13} - \frac{1}{135} a^{12} - \frac{1}{135} a^{11} + \frac{1}{135} a^{10} + \frac{2}{45} a^{8} - \frac{2}{27} a^{7} + \frac{19}{135} a^{6} + \frac{64}{135} a^{5} + \frac{7}{27} a^{4} - \frac{1}{15} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{945} a^{14} + \frac{1}{135} a^{12} - \frac{1}{105} a^{11} + \frac{4}{945} a^{10} - \frac{7}{135} a^{8} - \frac{8}{105} a^{7} + \frac{74}{945} a^{6} - \frac{2}{21} a^{5} + \frac{437}{945} a^{4} - \frac{26}{105} a^{3} + \frac{157}{315} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{945} a^{15} - \frac{2}{945} a^{12} - \frac{2}{189} a^{11} - \frac{1}{135} a^{10} - \frac{1}{135} a^{9} + \frac{5}{63} a^{8} + \frac{16}{105} a^{7} - \frac{97}{945} a^{6} - \frac{368}{945} a^{5} - \frac{353}{945} a^{4} - \frac{26}{63} a^{3} + \frac{23}{315} a^{2} - \frac{3}{7} a$, $\frac{1}{14175} a^{16} - \frac{1}{14175} a^{15} - \frac{2}{14175} a^{14} + \frac{26}{14175} a^{13} + \frac{34}{14175} a^{12} - \frac{4}{2025} a^{11} - \frac{106}{14175} a^{10} + \frac{103}{14175} a^{9} - \frac{106}{14175} a^{8} + \frac{1954}{14175} a^{7} - \frac{412}{14175} a^{6} - \frac{1079}{14175} a^{5} - \frac{943}{4725} a^{4} + \frac{86}{189} a^{3} - \frac{59}{315} a^{2} - \frac{2}{21} a - \frac{1}{7}$, $\frac{1}{14175} a^{17} - \frac{1}{4725} a^{15} - \frac{2}{4725} a^{14} - \frac{1}{315} a^{13} - \frac{11}{1575} a^{12} - \frac{74}{14175} a^{11} + \frac{29}{4725} a^{10} - \frac{1}{4725} a^{9} - \frac{97}{675} a^{8} - \frac{34}{525} a^{7} - \frac{4}{1575} a^{6} - \frac{53}{14175} a^{5} - \frac{2288}{4725} a^{4} - \frac{41}{135} a^{3} + \frac{94}{315} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{14175} a^{18} + \frac{2}{4725} a^{15} - \frac{2}{4725} a^{14} - \frac{1}{675} a^{13} - \frac{2}{14175} a^{12} + \frac{26}{4725} a^{11} + \frac{23}{4725} a^{10} + \frac{19}{4725} a^{9} + \frac{173}{4725} a^{8} + \frac{1}{675} a^{7} + \frac{901}{14175} a^{6} + \frac{1738}{4725} a^{5} + \frac{2311}{4725} a^{4} - \frac{29}{315} a^{3} - \frac{1}{45} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{102555765111877752965498864042625} a^{19} - \frac{2532752131798114886085555739}{102555765111877752965498864042625} a^{18} + \frac{42198996751513412276878831}{6837051007458516864366590936175} a^{17} - \frac{51547062160431991175021639}{4883607862470369188833279240125} a^{16} - \frac{707364477362640174000674629}{2279017002486172288122196978725} a^{15} - \frac{17497104073026138980934665419}{34185255037292584321832954680875} a^{14} + \frac{304052601818175571408406058622}{102555765111877752965498864042625} a^{13} - \frac{34218263691190056019937502772}{14650823587411107566499837720375} a^{12} + \frac{45053702369926391101704513979}{34185255037292584321832954680875} a^{11} - \frac{211025656303182468001552376363}{34185255037292584321832954680875} a^{10} + \frac{28004702069324896542465564394}{11395085012430861440610984893625} a^{9} - \frac{302357420960518295461456991986}{6837051007458516864366590936175} a^{8} - \frac{1723825893077296436132335055423}{102555765111877752965498864042625} a^{7} + \frac{2456103448151215536645850871677}{20511153022375550593099772808525} a^{6} - \frac{477115978644986128704415969637}{11395085012430861440610984893625} a^{5} + \frac{1471979924165698646167014778921}{34185255037292584321832954680875} a^{4} + \frac{512616794095308347859409831942}{2279017002486172288122196978725} a^{3} - \frac{14730217958869872490950934048}{151934466832411485874813131915} a^{2} - \frac{410648914411070546669635781}{50644822277470495291604377305} a - \frac{134678752527042648772750523}{2411658203689071204362113205}$
Class group and class number
$C_{22}\times C_{88}$, which has order $1936$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 255586981.075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3255}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{21}, \sqrt{-155})\), 5.1.10595025.1 x5, 10.0.365388575713284375.1, 10.0.17399455986346875.1 x5, 10.2.2357345649763125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |