Normalized defining polynomial
\( x^{20} - 10 x^{19} + 59 x^{18} - 216 x^{17} + 521 x^{16} - 808 x^{15} + 894 x^{14} - 1546 x^{13} + 4905 x^{12} - 8670 x^{11} + 5177 x^{10} + 7432 x^{9} - 18513 x^{8} - 19136 x^{7} + 21318 x^{6} - 30316 x^{5} + 268819 x^{4} + 16550 x^{3} + 337065 x^{2} + 37050 x + 94025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1316926149061478577602560000000000=2^{28}\cdot 5^{10}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{115} a^{18} - \frac{7}{115} a^{17} - \frac{1}{23} a^{16} + \frac{1}{115} a^{15} + \frac{3}{115} a^{14} - \frac{14}{115} a^{13} - \frac{13}{115} a^{12} + \frac{52}{115} a^{11} - \frac{38}{115} a^{10} + \frac{4}{23} a^{9} - \frac{52}{115} a^{8} - \frac{47}{115} a^{7} + \frac{27}{115} a^{6} + \frac{9}{115} a^{5} + \frac{36}{115} a^{4} + \frac{41}{115} a^{3} + \frac{42}{115} a^{2} + \frac{11}{23} a + \frac{3}{23}$, $\frac{1}{48561915479801838025648477002958945517910052327987495} a^{19} - \frac{118539284053367554012199997455362306130003130837192}{48561915479801838025648477002958945517910052327987495} a^{18} + \frac{1071468215002744377913762515680531022203204509192488}{48561915479801838025648477002958945517910052327987495} a^{17} - \frac{2348271760241632702212209855840088005635052448167988}{48561915479801838025648477002958945517910052327987495} a^{16} - \frac{2767622959158619289098478824908117636901090077900041}{48561915479801838025648477002958945517910052327987495} a^{15} - \frac{767571423244717012700257088773968501452489574138147}{48561915479801838025648477002958945517910052327987495} a^{14} + \frac{10723803224006928825213457512415588434212996649877442}{48561915479801838025648477002958945517910052327987495} a^{13} - \frac{1189787599490525744548908304873010899233173325174901}{9712383095960367605129695400591789103582010465597499} a^{12} - \frac{2250304280898363481287953518801160383043227896877512}{9712383095960367605129695400591789103582010465597499} a^{11} - \frac{18611585729944197933772372634199359384073364032136026}{48561915479801838025648477002958945517910052327987495} a^{10} + \frac{21191214697286950447821706413531912214206253584949427}{48561915479801838025648477002958945517910052327987495} a^{9} + \frac{14834292728064640223909053117018762584508768986771124}{48561915479801838025648477002958945517910052327987495} a^{8} + \frac{3689281309792266094205094410200803221956475703638367}{48561915479801838025648477002958945517910052327987495} a^{7} - \frac{22778114517903922345896882247352769261509237206571923}{48561915479801838025648477002958945517910052327987495} a^{6} - \frac{5012482566949649369928774488472854801823454596686253}{48561915479801838025648477002958945517910052327987495} a^{5} - \frac{152352637720807719599322886523581044735395790168355}{422277525911320330657812843503990830590522194156413} a^{4} - \frac{11131462723918239578683238128384651025588473605335617}{48561915479801838025648477002958945517910052327987495} a^{3} - \frac{1272152568579656591872548115152860689754081892315444}{48561915479801838025648477002958945517910052327987495} a^{2} + \frac{199949112068547456271178430736688531808388201000144}{9712383095960367605129695400591789103582010465597499} a + \frac{4650571806605325380713371434111322491619084994109814}{9712383095960367605129695400591789103582010465597499}$
Class group and class number
$C_{198}$, which has order $198$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 828338.933858 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1387600.1, 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3469 | Data not computed | ||||||