Normalized defining polynomial
\( x^{20} - 35 x^{17} + 95 x^{16} - 9 x^{15} + 550 x^{14} - 1225 x^{13} + 775 x^{12} - 2315 x^{11} - 2406 x^{10} + 21900 x^{9} - 50850 x^{8} + 54080 x^{7} - 19525 x^{6} - 26045 x^{5} + 367525 x^{4} - 409350 x^{3} + 286080 x^{2} - 98180 x + 20809 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1316709708800992498924102783203125=5^{16}\cdot 29^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{10} + \frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{11} + \frac{1}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{12} + \frac{1}{5} a^{7} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{18} + \frac{2}{25} a^{17} - \frac{2}{25} a^{16} - \frac{1}{25} a^{15} + \frac{2}{25} a^{13} + \frac{4}{25} a^{12} - \frac{4}{25} a^{11} - \frac{7}{25} a^{10} + \frac{2}{5} a^{9} - \frac{9}{25} a^{8} - \frac{3}{25} a^{7} - \frac{2}{25} a^{6} - \frac{6}{25} a^{5} - \frac{1}{5} a^{4} + \frac{11}{25} a^{3} + \frac{2}{25} a^{2} - \frac{12}{25} a - \frac{6}{25}$, $\frac{1}{1495236939257165170082638611192071850362325224842625} a^{19} + \frac{17219174913407198264549762821584702886748764379996}{1495236939257165170082638611192071850362325224842625} a^{18} - \frac{49296282390390510187237176564415681514598470850759}{1495236939257165170082638611192071850362325224842625} a^{17} + \frac{93028091498683053009772163975173087548951504207151}{1495236939257165170082638611192071850362325224842625} a^{16} + \frac{59903444965128652215103244666572794536181343317816}{1495236939257165170082638611192071850362325224842625} a^{15} + \frac{30518827856081610960704785181567595778109556930977}{1495236939257165170082638611192071850362325224842625} a^{14} - \frac{90294331749651825961600046160032474651035437740694}{213605277036737881440376944456010264337475032120375} a^{13} + \frac{57822435460043073811986536534814295578051230400576}{213605277036737881440376944456010264337475032120375} a^{12} + \frac{747183473124718736168499631949761646704091585177947}{1495236939257165170082638611192071850362325224842625} a^{11} - \frac{300418712329309807012287692431411859326921819058953}{1495236939257165170082638611192071850362325224842625} a^{10} - \frac{469331276360680923528375112748929221948173663242094}{1495236939257165170082638611192071850362325224842625} a^{9} - \frac{462966730418562127221219893030480341995625490037224}{1495236939257165170082638611192071850362325224842625} a^{8} + \frac{5879305538931357829249108924473331957927342945021}{1495236939257165170082638611192071850362325224842625} a^{7} - \frac{597419437283659723666747498058554207899719844312229}{1495236939257165170082638611192071850362325224842625} a^{6} - \frac{50640932911524388110612825165501900843453456347362}{213605277036737881440376944456010264337475032120375} a^{5} + \frac{143624257360256364160178010081362354602348983431466}{1495236939257165170082638611192071850362325224842625} a^{4} + \frac{169308837799341875098601854133518875309917613260661}{1495236939257165170082638611192071850362325224842625} a^{3} - \frac{129021950535991897772163662794424749694515316644019}{1495236939257165170082638611192071850362325224842625} a^{2} + \frac{186163420959090732818050430656359511833692475245556}{1495236939257165170082638611192071850362325224842625} a + \frac{92803211367727990188158316472745522642660881920421}{1495236939257165170082638611192071850362325224842625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 318100225.529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 10.2.8012167578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 29 | Data not computed | ||||||